Subadditivity of the Partition Function (up to boundary terms)

Upper bound relating the finite-volume partition function of a union to the product of partition functions of parts, with a boundary correction.
Subadditivity of the Partition Function (up to boundary terms)

This lemma concerns the finite-volume partition function associated with a and the corresponding .

Statement

Let Λ1,Λ2Zd\Lambda_1,\Lambda_2\subset \mathbb{Z}^d be disjoint finite regions. Write the finite-volume Hamiltonian on Λ1Λ2\Lambda_1\cup\Lambda_2 as

HΛ1Λ2(σ)=HΛ1(σ)+HΛ2(σ)+Hcross(σ), H_{\Lambda_1\cup\Lambda_2}(\sigma) = H_{\Lambda_1}(\sigma) + H_{\Lambda_2}(\sigma) + H_{\mathrm{cross}}(\sigma),

where HcrossH_{\mathrm{cross}} contains the interaction terms that involve sites in both Λ1\Lambda_1 and Λ2\Lambda_2.

Assume there is a constant C0C\ge 0 such that for all configurations σ\sigma,

Hcross(σ)C(Λ1,Λ2), H_{\mathrm{cross}}(\sigma)\ge -\, C\,|\partial(\Lambda_1,\Lambda_2)|,

where (Λ1,Λ2)|\partial(\Lambda_1,\Lambda_2)| counts the interaction terms (e.g. edges/plaquettes/hyperedges, depending on the model) that “cross” between Λ1\Lambda_1 and Λ2\Lambda_2.

Then for every inverse temperature β0\beta\ge 0,

logZΛ1Λ2(β)logZΛ1(β)+logZΛ2(β)+βC(Λ1,Λ2). \log Z_{\Lambda_1\cup\Lambda_2}(\beta) \le \log Z_{\Lambda_1}(\beta) + \log Z_{\Lambda_2}(\beta) + \beta C\,|\partial(\Lambda_1,\Lambda_2)|.

Equivalently,

ZΛ1Λ2(β)eβC(Λ1,Λ2)ZΛ1(β)ZΛ2(β). Z_{\Lambda_1\cup\Lambda_2}(\beta) \le e^{\beta C|\partial(\Lambda_1,\Lambda_2)|}\, Z_{\Lambda_1}(\beta)\, Z_{\Lambda_2}(\beta).

Key hypotheses and conclusions

Hypotheses

  • Λ1,Λ2\Lambda_1,\Lambda_2 are disjoint finite volumes.
  • The interaction across the interface is uniformly bounded from below by a constant times a boundary size: Hcross(σ)C(Λ1,Λ2)H_{\mathrm{cross}}(\sigma)\ge -C|\partial(\Lambda_1,\Lambda_2)|. (This holds, for example, for finite-range, uniformly bounded interactions.)

Conclusions

  • logZΛ\log Z_\Lambda is subadditive up to a boundary correction.
  • For “regular” shapes (e.g. cubes), (Λ1,Λ2)|\partial(\Lambda_1,\Lambda_2)| grows like surface area, so the correction is lower order compared to volume.

Proof idea / significance

Using the decomposition HΛ1Λ2=HΛ1+HΛ2+HcrossH_{\Lambda_1\cup\Lambda_2}=H_{\Lambda_1}+H_{\Lambda_2}+H_{\mathrm{cross}} and the bound eβHcross(σ)eβC(Λ1,Λ2)e^{-\beta H_{\mathrm{cross}}(\sigma)}\le e^{\beta C|\partial(\Lambda_1,\Lambda_2)|}, one obtains ZΛ1Λ2eβCeβHΛ1eβHΛ2=eβCZΛ1ZΛ2Z_{\Lambda_1\cup\Lambda_2}\le e^{\beta C|\partial|}\sum e^{-\beta H_{\Lambda_1}}e^{-\beta H_{\Lambda_2}} = e^{\beta C|\partial|}Z_{\Lambda_1}Z_{\Lambda_2}.

This estimate is a standard input to proving existence of the thermodynamic limit of the lattice pressure ( ) via subadditivity arguments and , as used in .