Example: van der Waals gas

Mean-field model of an interacting fluid with excluded volume and attraction: equation of state, free energy, and critical point.
Example: van der Waals gas

A van der Waals gas is a simple interacting-fluid model that modifies the by (i) an excluded volume per particle bb and (ii) a mean-field attraction strength aa.

Equation of state

With number density n=N/Vn=N/V, the van der Waals equation is

(p+an2)(1bn)=nkBT, \big(p + a n^2\big)\,(1-b n)=n k_B T,

equivalently

(p+a(NV)2)(VNb)=NkBT, \bigg(p + a\Big(\frac{N}{V}\Big)^2\bigg)\,(V-Nb)=N k_B T,

where pp is the and TT the .

A free-energy representation (useful for coexistence)

A standard mean-field model is

F(T,V,N)=Fid(T,VNb,N)aN2V, F(T,V,N)=F_{\mathrm{id}}(T,V-Nb,N)-a\frac{N^2}{V},

where FidF_{\mathrm{id}} is the ideal-gas free energy evaluated at the reduced volume VNbV-Nb. Differentiating gives the equation of state via

p=(FV)T,N. p = -\left(\frac{\partial F}{\partial V}\right)_{T,N}.

This form is also a natural entry point to metastability and coexistence (see and ).

Critical point (molar form)

Using molar volume VmV_m and gas constant RR,

p=RTVmbaVm2. p=\frac{RT}{V_m-b}-\frac{a}{V_m^2}.

The critical point occurs where (p/Vm)T=(2p/Vm2)T=0(\partial p/\partial V_m)_T=(\partial^2 p/\partial V_m^2)_T=0, yielding

Vm,c=3b,Tc=8a27Rb,pc=a27b2, V_{m,c}=3b,\qquad T_c=\frac{8a}{27Rb},\qquad p_c=\frac{a}{27b^2},

and the critical compressibility factor is

Zc=pcVm,cRTc=38. Z_c=\frac{p_c V_{m,c}}{R T_c}=\frac{3}{8}.

Remarks