Example: two-level paramagnet (noninteracting spins)

Canonical solution for N independent two-level magnetic moments in a field: partition function, magnetization, Curie law, energy, and heat capacity.
Example: two-level paramagnet (noninteracting spins)

Consider NN independent spins (or magnetic moments) in a uniform magnetic field BB. Each spin has two energy levels

E±=μB, E_\pm = \mp \mu B,

so the system is a canonical-ensemble model (see ) with a simple discrete spectrum.

Partition function

For inverse temperature β=1/(kBT)\beta=1/(k_B T) (with TT the ), the single-spin partition function is

z(β,B)=eβμB+eβμB=2cosh(βμB), z(\beta,B)=e^{\beta\mu B}+e^{-\beta\mu B}=2\cosh(\beta\mu B),

hence the NN-spin is

Z(β,B)=z(β,B)N=(2cosh(βμB))N. Z(\beta,B)=z(\beta,B)^N=\big(2\cosh(\beta\mu B)\big)^N.

Free energy and magnetization

The is

F(T,B)=NkBTlog ⁣(2cosh(βμB)). F(T,B)=-Nk_B T\log\!\big(2\cosh(\beta\mu B)\big).

The magnetization is the field derivative of FF:

M=(FB)T=Nμtanh(βμB). M = -\left(\frac{\partial F}{\partial B}\right)_T = N\mu\,\tanh(\beta\mu B).

The susceptibility is

χ=(MB)T=Nβμ2sech2(βμB), \chi=\left(\frac{\partial M}{\partial B}\right)_T = N\beta\mu^2\,\mathrm{sech}^2(\beta\mu B),

and for high temperature (small βμB\beta\mu B) this gives Curie’s law

χNμ2kBT. \chi \approx \frac{N\mu^2}{k_B T}.

Energy, heat capacity, entropy

The is

U=βlogZ=NμBtanh(βμB). U = -\frac{\partial}{\partial\beta}\log Z = -N\mu B\,\tanh(\beta\mu B).

Differentiating in TT gives the heat capacity at fixed BB:

C=(UT)B=NkB(βμB)2sech2(βμB). C = \left(\frac{\partial U}{\partial T}\right)_B = N k_B(\beta\mu B)^2\,\mathrm{sech}^2(\beta\mu B).

The can be written as

S=(FT)B=NkB[log ⁣(2coshx)xtanhx],x=βμB. S = -\left(\frac{\partial F}{\partial T}\right)_B = N k_B\Big[\log\!\big(2\cosh x\big)-x\tanh x\Big], \qquad x=\beta\mu B.

Prerequisites: , , , and .