TFAE: quantum equilibrium at inverse temperature β

Equivalent characterizations of thermal equilibrium for a finite quantum system: Gibbs form, KMS condition, and variational (entropy/free-energy) principles.
TFAE: quantum equilibrium at inverse temperature β

Fix a finite quantum system with Hamiltonian HH and states given by a ρ\rho (positive, trace 11). Let β=1/(kBT)\beta = 1/(k_B T) where TT is the .

Then the following are equivalent (TFAE):

  1. Gibbs form (canonical state).
    ρ\rho equals the

    ρβ=eβHZ(β),Z(β)=TreβH,\rho_\beta = \frac{e^{-\beta H}}{Z(\beta)}, \qquad Z(\beta)=\mathrm{Tr}\,e^{-\beta H},

    where Z(β)Z(\beta) is the .

  2. Finite-system KMS condition.
    With Heisenberg dynamics τt(A)=eitHAeitH\tau_t(A)=e^{itH}Ae^{-itH}, the state ω(A)=Tr(ρA)\omega(A)=\mathrm{Tr}(\rho A) satisfies the at inverse temperature β\beta: for all observables A,BA,B, the function

    FA,B(t)=ω ⁣(Aτt(B))F_{A,B}(t)=\omega\!\big(A\,\tau_t(B)\big)

    extends to a function analytic in the strip 0<Imz<β0<\mathrm{Im}\,z<\beta with boundary values

    FA,B(t+iβ)=ω ⁣(τt(B)A).F_{A,B}(t+i\beta)=\omega\!\big(\tau_t(B)\,A\big).
  3. Free-energy minimizer (variational principle).
    ρ\rho minimizes the (Helmholtz) free-energy functional

    Fβ(ρ)=Tr(ρH)β1S(ρ),\mathcal F_\beta(\rho)=\mathrm{Tr}(\rho H)-\beta^{-1}S(\rho),

    where S(ρ)=Tr(ρlogρ)S(\rho)=-\mathrm{Tr}(\rho\log\rho) is the . Equivalently,

    Fβ(ρ)Fβ(ρβ)for all density operators ρ.\mathcal F_\beta(\rho)\ge \mathcal F_\beta(\rho_\beta) \quad\text{for all density operators }\rho.

    (Compare with in the classical setting.)

  4. Maximum entropy subject to mean energy (Lagrange multiplier form).
    For fixed mean energy U=Tr(ρH)U=\mathrm{Tr}(\rho H), the state ρ\rho maximizes S(ρ)S(\rho) among all density operators with that same UU; the maximizer is of Gibbs form with some β\beta.

  5. Relative-entropy gap identity.
    For all density operators ρ\rho,

    Fβ(ρ)Fβ(ρβ)=β1D(ρρβ)0,\mathcal F_\beta(\rho)-\mathcal F_\beta(\rho_\beta)=\beta^{-1}D(\rho\|\rho_\beta)\ge 0,

    where D(ρσ)=Tr(ρ(logρlogσ))D(\rho\|\sigma)=\mathrm{Tr}(\rho(\log\rho-\log\sigma)) is the quantum analogue of .

Prerequisites: , , , and .