Quantum harmonic oscillator in thermal equilibrium

Exact Gibbs-state partition function, energy, entropy, and heat capacity for the quantum harmonic oscillator; classical and low-temperature limits.
Quantum harmonic oscillator in thermal equilibrium

Model and Gibbs state

Let HH be the quantum harmonic oscillator Hamiltonian with spectrum

En=ω(n+12),n=0,1,2, E_n=\hbar\omega\left(n+\frac12\right),\qquad n=0,1,2,\dots

Thermal equilibrium at inverse temperature β\beta is described by the

ρβ=eβHZ(β), \rho_\beta = \frac{e^{-\beta H}}{Z(\beta)},

a .

Quantum partition function

The is the geometric series

Z(β)=n=0eβEn=n=0eβω(n+1/2)=eβω/21eβω=12sinh(βω/2). Z(\beta)=\sum_{n=0}^\infty e^{-\beta E_n} =\sum_{n=0}^\infty e^{-\beta\hbar\omega(n+1/2)} =\frac{e^{-\beta\hbar\omega/2}}{1-e^{-\beta\hbar\omega}} =\frac{1}{2\sinh(\beta\hbar\omega/2)}.

Free energy, mean energy, and heat capacity

The free energy (compare ) is

F(β)=β1lnZ(β)=ω2+β1ln ⁣(1eβω). F(\beta)=-\beta^{-1}\ln Z(\beta) =\frac{\hbar\omega}{2}+\beta^{-1}\ln\!\bigl(1-e^{-\beta\hbar\omega}\bigr).

The mean energy is

U(β)=βlnZ(β)=ω2+ωeβω1. U(\beta)=-\frac{\partial}{\partial\beta}\ln Z(\beta) =\frac{\hbar\omega}{2}+\frac{\hbar\omega}{e^{\beta\hbar\omega}-1}.

It is often convenient to introduce the Bose occupation number

nˉ(β)=1eβω1,so thatU=ω(nˉ+12). \bar n(\beta)=\frac{1}{e^{\beta\hbar\omega}-1}, \qquad\text{so that}\qquad U=\hbar\omega\left(\bar n+\frac12\right).

The heat capacity at constant volume (see ) is

CV=UT=kB(βω)2eβω(eβω1)2. C_V=\frac{\partial U}{\partial T} = k_B(\beta\hbar\omega)^2\,\frac{e^{\beta\hbar\omega}}{(e^{\beta\hbar\omega}-1)^2}.

Entropy

The thermodynamic entropy can be computed as the

S(β)=kBTr(ρβlnρβ). S(\beta)=-k_B\,\mathrm{Tr}(\rho_\beta\ln\rho_\beta).

For a single oscillator this evaluates to the standard bosonic form

S(β)=kB[(nˉ+1)ln(nˉ+1)nˉlnnˉ], S(\beta)=k_B\Bigl[(\bar n+1)\ln(\bar n+1)-\bar n\ln \bar n\Bigr],

and it also agrees with the canonical identity S=kB(lnZ+βU)S=k_B(\ln Z+\beta U).

Classical and low-temperature limits

  • High-temperature limit βω1\beta\hbar\omega\ll 1:

    Z(β)1βω,U(β)kBT,CVkB, Z(\beta)\sim \frac{1}{\beta\hbar\omega},\qquad U(\beta)\sim k_B T,\qquad C_V\sim k_B,

    matching the .

  • Low-temperature limit βω1\beta\hbar\omega\gg 1:

    U(β)ω2,CVkB(βω)2eβω, U(\beta)\to \frac{\hbar\omega}{2},\qquad C_V \sim k_B(\beta\hbar\omega)^2 e^{-\beta\hbar\omega},

    showing exponential suppression of thermal excitations.