Susceptibility equals variance of magnetization

Finite-volume fluctuation–response identity: magnetic susceptibility is β times the magnetization variance (per volume).
Susceptibility equals variance of magnetization

Let μΛ,β,h\mu_{\Lambda,\beta,h} be a on a finite region Λ\Lambda, with inverse temperature β>0\beta>0 and external magnetic field hh coupled linearly to the total magnetization MΛ(σ)=xΛσxM_\Lambda(\sigma)=\sum_{x\in\Lambda}\sigma_x (e.g. for the ). Let

  • ZΛ(β,h)Z_\Lambda(\beta,h) be the ,
  • pΛ(β,h)=1ΛlogZΛ(β,h)p_\Lambda(\beta,h)=\frac{1}{|\Lambda|}\log Z_\Lambda(\beta,h) be the (finite-volume) ,
  • mΛ(β,h)=1ΛEμΛ,β,h[MΛ]m_\Lambda(\beta,h)=\frac{1}{|\Lambda|}\,\mathbb{E}_{\mu_{\Lambda,\beta,h}}[M_\Lambda] be the magnetization density,
  • χΛ(β,h)=hmΛ(β,h)\chi_\Lambda(\beta,h)=\partial_h m_\Lambda(\beta,h) be the (finite-volume) per site.

Statement

Assume the Hamiltonian depends on hh only through a term hMΛ-h\,M_\Lambda (linear field coupling). Then χΛ(β,h)\chi_\Lambda(\beta,h) exists and

χΛ(β,h)=βΛVarμΛ,β,h(MΛ)=βΛVarμΛ,β,h(mΛ). \chi_\Lambda(\beta,h) = \frac{\beta}{|\Lambda|}\,\mathrm{Var}_{\mu_{\Lambda,\beta,h}}(M_\Lambda) = \beta\,|\Lambda|\,\mathrm{Var}_{\mu_{\Lambda,\beta,h}}(m_\Lambda).

Equivalently,

h2pΛ(β,h)=β2ΛVarμΛ,β,h(MΛ)andχΛ(β,h)=1βh2pΛ(β,h). \partial_h^2 p_\Lambda(\beta,h) = \frac{\beta^2}{|\Lambda|}\,\mathrm{Var}_{\mu_{\Lambda,\beta,h}}(M_\Lambda) \quad\text{and}\quad \chi_\Lambda(\beta,h)=\frac{1}{\beta}\,\partial_h^2 p_\Lambda(\beta,h).

Key hypotheses

  • Finite region Λ\Lambda and a well-defined .
  • External field enters the energy as HΛ,h=HΛ,0hMΛH_{\Lambda,h}=H_{\Lambda,0}-h\,M_\Lambda (linear coupling).
  • Expectations and are finite (automatic for bounded spins).

Conclusions

  • χΛ(β,h)0\chi_\Lambda(\beta,h)\ge 0 since it is proportional to a variance.
  • Susceptibility is a fluctuation: large magnetization fluctuations imply large response to hh.
  • This is a concrete instance of the .

Proof idea / significance

Differentiate logZΛ(β,h)\log Z_\Lambda(\beta,h) with respect to hh. The first derivative gives βE[MΛ]\beta\,\mathbb{E}[M_\Lambda], and the second derivative produces the covariance (variance) term. The identity underlies many response formulas and connects critical behavior to diverging fluctuations.