Monotonicity of quantum relative entropy

Quantum relative entropy cannot increase under completely positive trace-preserving maps (data processing inequality).
Monotonicity of quantum relative entropy

Quantum relative entropy is the operator-algebraic analogue of for .

For density operators ρ,σ\rho,\sigma on the same finite-dimensional Hilbert space, define

D(ρσ)={Tr[ρ(logρlogσ)],supp(ρ)supp(σ),+,otherwise. D(\rho\|\sigma)= \begin{cases} \mathrm{Tr}\big[\rho(\log\rho-\log\sigma)\big], & \mathrm{supp}(\rho)\subseteq \mathrm{supp}(\sigma),\\ +\infty, & \text{otherwise.} \end{cases}

Statement (data processing inequality)

For every completely positive trace-preserving (CPTP) map (quantum channel) Φ\Phi,

D(Φ(ρ)Φ(σ))D(ρσ). D\big(\Phi(\rho)\,\|\,\Phi(\sigma)\big)\le D(\rho\|\sigma).

Key hypotheses

  • ρ,σ\rho,\sigma are density operators; if supp(ρ)supp(σ)\mathrm{supp}(\rho)\nsubseteq \mathrm{supp}(\sigma) then D(ρσ)=+D(\rho\|\sigma)=+\infty by convention.
  • Φ\Phi is linear, completely positive, and trace-preserving (CPTP).

Key conclusions

  • Information cannot increase under coarse-graining: processing, measuring, adding noise, or discarding subsystems cannot increase DD.

  • Partial trace case: for bipartite states ρAB,σAB\rho_{AB},\sigma_{AB},

    D(ρABσAB)D(ρAσA), D(\rho_{AB}\|\sigma_{AB}) \ge D(\rho_A\|\sigma_A),

    where ρA=TrBρAB\rho_A=\mathrm{Tr}_B\rho_{AB} and similarly for σA\sigma_A.

  • Nonnegativity: choosing Φ\Phi to be a constant channel gives 0=D(Φ(ρ)Φ(σ))D(ρσ)0 = D(\Phi(\rho)\|\Phi(\sigma)) \le D(\rho\|\sigma), hence D(ρσ)0D(\rho\|\sigma)\ge 0.

  • The inequality implies standard entropy consequences such as .

Proof idea / significance

A common proof strategy is:

  1. Stinespring dilation: represent Φ()=TrE ⁣(U(τE)U)\Phi(\cdot)=\mathrm{Tr}_E\!\big(U(\cdot\otimes\tau_E)U^\dagger\big) for an ancilla state τE\tau_E and a unitary UU.
  2. Use unitary invariance of DD and monotonicity under partial trace to reduce to the subsystem-discarding case.

In statistical mechanics and thermodynamics of open quantum systems, data processing formalizes irreversibility: when one loses access to degrees of freedom, the relative entropy to a reference state (e.g. equilibrium) cannot increase, yielding many “second-law type” bounds.