Pressure identity in the canonical ensemble

In the canonical ensemble, pressure equals (1/β) times the volume derivative of log partition function, equivalently -∂F/∂V.
Pressure identity in the canonical ensemble

Statement

For a system in the at inverse temperature β\beta, with canonical partition function depending on the volume parameter VV, define the Helmholtz free energy F(β,V)=(1/β)logZ(β,V)F(\beta,V)=-(1/\beta)\log Z(\beta,V).

Then the canonical pressure satisfies

p(β,V)  =  (FV)β  =  1β(VlogZ(β,V))β. p(\beta,V) \;=\; -\left(\frac{\partial F}{\partial V}\right)_{\beta} \;=\; \frac{1}{\beta}\left(\frac{\partial}{\partial V}\log Z(\beta,V)\right)_{\beta}.

Key hypotheses

  • A well-defined dependence of the Hamiltonian and/or configuration domain on the volume parameter VV, so that Z(β,V)Z(\beta,V) is differentiable in VV.
  • Interchange of /V\partial/\partial V with the integral defining Z(β,V)Z(\beta,V) is justified.

Conclusion

  • Pressure is a logarithmic derivative of the canonical partition function with respect to volume.
  • Equivalently, pressure is the negative volume derivative of the Helmholtz free energy.

Proof idea / significance

Start from F=(1/β)logZF=-(1/\beta)\log Z. Differentiating in VV gives (F/V)β=(1/β)(VlogZ)β-(\partial F/\partial V)_\beta = (1/\beta)\,(\partial_V \log Z)_\beta. This identity is one of the main “thermodynamic observables from ZZ” formulas, paralleling for Hβ\langle H\rangle_\beta.