Peierls–Bogoliubov inequality

A variational upper bound on free energy: F(H) ≤ F(H0) + ⟨H−H0⟩_{H0}, equivalently a tangent-line bound for log Tr e^{A}.
Peierls–Bogoliubov inequality

Definitions and notation

Statement

Let AA and BB be self-adjoint operators on a finite-dimensional Hilbert space (or more generally assume eAe^{A} and eA+Be^{A+B} are trace-class so the traces below are finite). Define

Z(A):=Tr(eA),BA:=Tr(eAB)Tr(eA). Z(A) := \operatorname{Tr}(e^{A}), \qquad \langle B\rangle_{A} := \frac{\operatorname{Tr}(e^{A}B)}{\operatorname{Tr}(e^{A})}.

Then the Peierls–Bogoliubov inequality states:

logZ(A+B)    logZ(A)+BA. \log Z(A+B) \;\ge\; \log Z(A) + \langle B\rangle_{A}.

Thermodynamic form. Let HH and H0H_0 be (finite-volume) Hamiltonians and fix β>0\beta>0. Set

Z:=Tr(eβH),Z0:=Tr(eβH0),F(H):=1βlogZ. Z := \operatorname{Tr}(e^{-\beta H}), \qquad Z_0 := \operatorname{Tr}(e^{-\beta H_0}), \qquad F(H) := -\frac{1}{\beta}\log Z.

Let 0\langle\cdot\rangle_{0} denote expectation in the Gibbs state ρ0=eβH0/Z0\rho_0 = e^{-\beta H_0}/Z_0. Then

F(H)F(H0)+HH00. F(H) \le F(H_0) + \langle H - H_0\rangle_{0}.

Key hypotheses and conclusions

Hypotheses

  • A,BA,B are self-adjoint and Z(A),Z(A+B)Z(A),Z(A+B) are finite.
  • In the Hamiltonian form: ZZ and Z0Z_0 are finite at the chosen inverse temperature β\beta.

Conclusions

  • logZ()\log Z(\cdot) is bounded below by its tangent plane: logZ(A+B)logZ(A)+BA\log Z(A+B)\ge \log Z(A)+\langle B\rangle_A.
  • Free energy admits a variational upper bound in terms of any trial Hamiltonian H0H_0 and its Gibbs expectation.

Proof idea / significance

Consider the function ϕ(t)=logTr(eA+tB)\phi(t)=\log \operatorname{Tr}(e^{A+tB}). Under mild conditions, ϕ\phi is convex in tt. Convexity implies the supporting line inequality ϕ(1)ϕ(0)+ϕ(0)\phi(1)\ge \phi(0)+\phi'(0), and a direct differentiation yields ϕ(0)=Tr(eAB)/Tr(eA)=BA\phi'(0)=\operatorname{Tr}(e^{A}B)/\operatorname{Tr}(e^{A})=\langle B\rangle_A.

This inequality is the basis of Bogoliubov’s variational method: choose a tractable H0H_0 (e.g. mean-field) and optimize the upper bound F(H)F(H0)+HH00F(H) \le F(H_0)+\langle H-H_0\rangle_{0} over parameters in H0H_0.