Microcanonical measure

Uniform probability measure on the microcanonical energy shell, expressing equal a priori probability for accessible microstates.
Microcanonical measure

Fix a classical Γ\Gamma with Liouville dΓd\Gamma, and a H(x)H(x). For energy EE and window ΔE>0\Delta E>0, let ΣE,ΔE\Sigma_{E,\Delta E} be the .

Definition (finite-thickness shell)

The microcanonical measure is the normalized restriction of Liouville measure to the shell:

μE,ΔE(A)  =  1Ω(E,ΔE)Γ1A(x)1ΣE,ΔE(x)dΓ, \mu_{E,\Delta E}(A) \;=\; \frac{1}{\Omega(E,\Delta E)}\int_{\Gamma}\mathbf{1}_A(x)\,\mathbf{1}_{\Sigma_{E,\Delta E}}(x)\, d\Gamma,

where

Ω(E,ΔE)  =  Γ1ΣE,ΔE(x)dΓ \Omega(E,\Delta E) \;=\; \int_{\Gamma}\mathbf{1}_{\Sigma_{E,\Delta E}}(x)\, d\Gamma

is the shell volume. This makes μE,ΔE\mu_{E,\Delta E} a on Γ\Gamma.

Equivalently, the microcanonical density with respect to dΓd\Gamma is

ρE,ΔE(x)  =  1ΣE,ΔE(x)Ω(E,ΔE). \rho_{E,\Delta E}(x) \;=\; \frac{\mathbf{1}_{\Sigma_{E,\Delta E}}(x)}{\Omega(E,\Delta E)}.

Definition (delta-function energy surface)

Formally, one can write a “surface” version concentrated on H(x)=EH(x)=E:

μE(dx)  =  δ ⁣(EH(x))g(E)dΓ, \mu_E(dx) \;=\; \frac{\delta\!\big(E-H(x)\big)}{g(E)}\, d\Gamma,

where g(E)g(E) is the ensuring normalization.

Ensemble averages

Given an observable A:ΓRA:\Gamma\to\mathbb{R} (a function of the ), its microcanonical is

Amc  =  ΓA(x)μE,ΔE(dx). \langle A\rangle_{\mathrm{mc}} \;=\; \int_{\Gamma} A(x)\, \mu_{E,\Delta E}(dx).

This is the same object as the of AA under the probability distribution μE,ΔE\mu_{E,\Delta E}.

Invariance and equilibrium meaning

Because Hamiltonian time evolution preserves Liouville volume (Liouville’s theorem) and conserves energy, the microcanonical measure is stationary under the dynamics restricted to the shell. In the equilibrium picture, it encodes “equal a priori probability” among accessible microstates at fixed energy.

Entropy connection

The associated microcanonical is captured by the

S(E,ΔE)  =  kBlnΩ(E,ΔE), S(E,\Delta E) \;=\; k_B \ln \Omega(E,\Delta E),

with kBk_B.