KMS implies Gibbs in finite quantum systems

Converse to the Gibbs–KMS theorem: any finite-dimensional β-KMS state for a Hamiltonian dynamics is the corresponding Gibbs state.
KMS implies Gibbs in finite quantum systems

Statement

Let H\mathcal H be a finite-dimensional Hilbert space and let H=HH=H^\ast be a (bounded) Hamiltonian. Consider the Heisenberg time evolution

αt(A)=eitHAeitH,AB(H). \alpha_t(A)=e^{itH}Ae^{-itH},\qquad A\in\mathcal B(\mathcal H).

If a state ω\omega on B(H)\mathcal B(\mathcal H) satisfies the at inverse temperature β>0\beta>0 for the dynamics (αt)tR(\alpha_t)_{t\in\mathbb R}, then ω\omega is the for HH at inverse temperature β\beta, i.e.

ω(A)=Tr ⁣(eβHA)Tr(eβH)for all AB(H), \omega(A)=\frac{\operatorname{Tr}\!\big(e^{-\beta H}A\big)}{\operatorname{Tr}(e^{-\beta H})}\qquad\text{for all }A\in\mathcal B(\mathcal H),

where Tr(eβH)\operatorname{Tr}(e^{-\beta H}) is the .

Equivalently, if ω(A)=Tr(ρA)\omega(A)=\operatorname{Tr}(\rho A) for a ρ\rho, then

ρ=eβHTr(eβH). \rho=\frac{e^{-\beta H}}{\operatorname{Tr}(e^{-\beta H})}.

This is the converse direction to .

Key hypotheses

  • Finite-dimensional algebra B(H)\mathcal B(\mathcal H) (so every state is normal and given by a density matrix).
  • Dynamics is inner and generated by a self-adjoint HH via αt(A)=eitHAeitH\alpha_t(A)=e^{itH}Ae^{-itH}.
  • ω\omega is a β\beta-KMS state for some β(0,)\beta\in(0,\infty) in the sense of .

Key conclusions

  • ω\omega must coincide with the Gibbs state for HH at inverse temperature β\beta.
  • In particular, for fixed (H,β)(H,\beta) the β\beta-KMS state is unique on B(H)\mathcal B(\mathcal H).
  • Shifting HH+cIH\mapsto H+cI does not change ω\omega (the constant cancels in normalization).

Proof idea / significance

Write ω(A)=Tr(ρA)\omega(A)=\operatorname{Tr}(\rho A) for a density matrix ρ\rho.

  1. Apply the KMS identity with A=IA=I to get ω(αiβ(B))=ω(B)\omega(\alpha_{i\beta}(B))=\omega(B) for all BB (analyticity is automatic in finite dimensions). In trace form this implies

    eβHρeβH=ρ, e^{\beta H}\rho e^{-\beta H}=\rho,

    hence [ρ,H]=0[\rho,H]=0.

  2. Use the full KMS relation

    Tr(ρAeβHBeβH)=Tr(ρBA) \operatorname{Tr}(\rho\,A\,e^{-\beta H}Be^{\beta H})=\operatorname{Tr}(\rho\,BA)

    and cyclicity of the trace (together with [ρ,H]=0[\rho,H]=0) to show that ρeβH\rho e^{\beta H} commutes with every matrix, hence ρeβH=cI\rho e^{\beta H}=cI for some scalar cc.

  3. Therefore ρ=ceβH\rho=c\,e^{-\beta H}, and normalization Tr(ρ)=1\operatorname{Tr}(\rho)=1 fixes c=Tr(eβH)1c=\operatorname{Tr}(e^{-\beta H})^{-1}.

Significance: in finite volume, “equilibrium = KMS” is equivalent to “equilibrium = Gibbs”. This equivalence motivates using the KMS condition as the definition of equilibrium in infinite-volume quantum statistical mechanics, where Gibbs density matrices may not exist.