Einstein solid

Crystal model of independent identical quantum oscillators; yields an explicit heat capacity curve with the Dulong–Petit high-temperature limit.
Einstein solid

Model

The Einstein solid models a crystal of NN atoms as 3N3N independent quantum harmonic oscillators, all with the same frequency ωE\omega_E (three vibrational modes per atom). Thermal equilibrium is taken in the at temperature TT.

This is essentially the replicated 3N3N times.

Partition function

Let Zosc(β)Z_{\mathrm{osc}}(\beta) be the single-oscillator partition function:

Zosc(β)=eβωE/21eβωE. Z_{\mathrm{osc}}(\beta)=\frac{e^{-\beta\hbar\omega_E/2}}{1-e^{-\beta\hbar\omega_E}}.

Independence gives

ZN(β)=(Zosc(β))3N. Z_N(\beta)=\bigl(Z_{\mathrm{osc}}(\beta)\bigr)^{3N}.

Free energy, internal energy, and entropy

The is

F(β)=β1lnZN(β)=3N(ωE2+β1ln ⁣(1eβωE)). F(\beta)=-\beta^{-1}\ln Z_N(\beta) =3N\left(\frac{\hbar\omega_E}{2}+\beta^{-1}\ln\!\bigl(1-e^{-\beta\hbar\omega_E}\bigr)\right).

The is

U(β)=βlnZN(β)=3N(ωE2+ωEeβωE1). U(\beta)=-\frac{\partial}{\partial\beta}\ln Z_N(\beta) =3N\left(\frac{\hbar\omega_E}{2}+\frac{\hbar\omega_E}{e^{\beta\hbar\omega_E}-1}\right).

Let nˉ=(eβωE1)1\bar n = (e^{\beta\hbar\omega_E}-1)^{-1}. Then the entropy can be written as

S(β)=3NkB[(nˉ+1)ln(nˉ+1)nˉlnnˉ], S(\beta)=3N k_B\Bigl[(\bar n+1)\ln(\bar n+1)-\bar n\ln\bar n\Bigr],

consistent with in the canonical setting.

Heat capacity

The heat capacity at constant volume (see ) is

CV=3NkB(βωE)2eβωE(eβωE1)2. C_V =3N k_B(\beta\hbar\omega_E)^2\,\frac{e^{\beta\hbar\omega_E}}{(e^{\beta\hbar\omega_E}-1)^2}.

Defining the Einstein temperature ΘE=ωE/kB\Theta_E=\hbar\omega_E/k_B, this becomes

CV=3NkB(ΘET)2eΘE/T(eΘE/T1)2. C_V = 3N k_B\left(\frac{\Theta_E}{T}\right)^2 \frac{e^{\Theta_E/T}}{(e^{\Theta_E/T}-1)^2}.

Limiting behavior and interpretation

  • High temperature TΘET\gg \Theta_E:

    CV3NkB, C_V \to 3N k_B,

    reproducing the Dulong–Petit law.

  • Low temperature TΘET\ll \Theta_E:

    CV3NkB(ΘET)2eΘE/T, C_V \sim 3N k_B\left(\frac{\Theta_E}{T}\right)^2 e^{-\Theta_E/T},

    which decays exponentially and therefore misses the observed T3T^3 law in many crystalline solids.

The modifies the mode spectrum to recover the correct low-temperature behavior.