Debye model

Phonon continuum approximation with a Debye cutoff; produces the low-temperature heat capacity law and the high-temperature Dulong–Petit limit.
Debye model

Physical setup

The Debye model treats lattice vibrations as a continuum of quantized normal modes (phonons) with approximately linear dispersion ωvsk\omega\approx v_s|k| at small k|k| in three dimensions. Instead of 3N3N identical modes as in the , one uses a distribution of frequencies up to a cutoff ωD\omega_D chosen so that the total number of modes is 3N3N.

Thermodynamic quantities are computed in the at temperature TT.

Debye density of states

In the isotropic 3D Debye approximation, the vibrational density of states is taken as

g(ω)=9NωD3ω2,0ωωD, g(\omega)=\frac{9N}{\omega_D^3}\,\omega^2,\qquad 0\le \omega\le \omega_D,

and g(ω)=0g(\omega)=0 for ω>ωD\omega>\omega_D.

Define the Debye temperature

ΘD=ωDkB. \Theta_D=\frac{\hbar\omega_D}{k_B}.

Internal energy and free energy

For each mode of frequency ω\omega, the mean energy is that of a :

uω(T)=ω2+ωeβω1. u_\omega(T)=\frac{\hbar\omega}{2}+\frac{\hbar\omega}{e^{\beta\hbar\omega}-1}.

Thus

U(T)=0ωDg(ω)uω(T)dω. U(T)=\int_0^{\omega_D} g(\omega)\,u_\omega(T)\,d\omega.

The zero-point contribution 120ωDg(ω)ωdω\frac12\int_0^{\omega_D} g(\omega)\hbar\omega\,d\omega is independent of TT and does not affect CVC_V.

A convenient free-energy representation (up to an additive zero-point constant) is

F(T)=kBT0ωDg(ω)ln ⁣(1eβω)dω. F(T)=k_B T \int_0^{\omega_D} g(\omega)\,\ln\!\bigl(1-e^{-\beta\hbar\omega}\bigr)\,d\omega.

Heat capacity formula

Differentiating U(T)U(T) gives the Debye heat capacity (see ):

CV(T)=9NkB(TΘD)30ΘD/Tx4ex(ex1)2dx,x=βω. C_V(T)=9N k_B\left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} \frac{x^4 e^x}{(e^x-1)^2}\,dx, \qquad x=\beta\hbar\omega.

Low- and high-temperature limits

  • Low temperature TΘDT\ll \Theta_D (upper limit ΘD/T\Theta_D/T\to\infty):

    0x4ex(ex1)2dx=4π415, \int_0^\infty \frac{x^4 e^x}{(e^x-1)^2}\,dx=\frac{4\pi^4}{15},

    hence

    CV(T)12π45NkB(TΘD)3, C_V(T)\sim \frac{12\pi^4}{5}N k_B\left(\frac{T}{\Theta_D}\right)^3,

    giving the T3T^3 law.

  • High temperature TΘDT\gg \Theta_D:

    CV(T)3NkB, C_V(T)\to 3N k_B,

    recovering the Dulong–Petit limit (also captured by ).

Conceptual takeaway

Relative to the Einstein model, the key change is the abundance of low-frequency modes (the ω2\omega^2 density of states), which produces a power-law rather than exponential suppression of thermal excitations at low TT.