Curie–Weiss model

Mean-field Ising ferromagnet with explicit variational free energy and self-consistency equation; exhibits spontaneous magnetization and a second-order phase transition.
Curie–Weiss model

Spins, Hamiltonian, and magnetization

The Curie–Weiss model is a fully connected mean-field analogue of the . Let σi{1,+1}\sigma_i\in\{-1,+1\} for i=1,,Ni=1,\dots,N and define the empirical magnetization

mN(σ)=1Ni=1Nσi. m_N(\sigma)=\frac{1}{N}\sum_{i=1}^N \sigma_i .

With coupling J>0J>0 (ferromagnetic) and external field hRh\in\mathbb{R}, the Hamiltonian is

HN(σ)=J2N(i=1Nσi)2hi=1Nσi=JN2mN(σ)2hNmN(σ). H_N(\sigma)=-\frac{J}{2N}\left(\sum_{i=1}^N \sigma_i\right)^2 - h\sum_{i=1}^N \sigma_i = -\frac{J N}{2}\,m_N(\sigma)^2 - h N\,m_N(\sigma).

This is a canonical example of .

Partition function reduced to a sum over magnetization

In the , the partition function is

ZN(β,h)=σ{1,+1}NeβHN(σ)=σexp ⁣(βN(J2mN(σ)2+hmN(σ))). Z_N(\beta,h)=\sum_{\sigma\in\{-1,+1\}^N} e^{-\beta H_N(\sigma)} =\sum_{\sigma} \exp\!\left(\beta N\left(\frac{J}{2}m_N(\sigma)^2+h\,m_N(\sigma)\right)\right).

Grouping configurations by magnetization values m{1,1+2/N,,1}m\in\{-1,-1+2/N,\dots,1\} yields

ZN(β,h)=m(NN(1+m)2)exp ⁣(βN(J2m2+hm)). Z_N(\beta,h)=\sum_{m} \binom{N}{\frac{N(1+m)}{2}}\, \exp\!\left(\beta N\left(\frac{J}{2}m^2+h\,m\right)\right).

Variational free energy in the thermodynamic limit

Using Stirling’s approximation,

1Nln(NN(1+m)2)s(m),s(m)=1+m2ln1+m21m2ln1m2, \frac{1}{N}\ln \binom{N}{\frac{N(1+m)}{2}} \to s(m), \qquad s(m)= -\frac{1+m}{2}\ln\frac{1+m}{2}-\frac{1-m}{2}\ln\frac{1-m}{2},

the pressure/free-energy per spin is obtained by Laplace’s method. Equivalently, the limiting free energy density can be written as

f(β,h)=1βlimN1NlnZN(β,h)=infm[1,1]Φβ,h(m), f(\beta,h)= -\frac{1}{\beta}\lim_{N\to\infty}\frac{1}{N}\ln Z_N(\beta,h) =\inf_{m\in[-1,1]} \Phi_{\beta,h}(m),

where the mean-field Landau functional is

Φβ,h(m)=J2m2hm1βs(m). \Phi_{\beta,h}(m)= -\frac{J}{2}m^2 - h m - \frac{1}{\beta}\,s(m).

This is a concrete instance of a .

Self-consistency equation

Stationary points satisfy mΦβ,h(m)=0\partial_m \Phi_{\beta,h}(m)=0, which gives the Curie–Weiss mean-field equation

m=tanh ⁣(β(Jm+h)). m=\tanh\!\bigl(\beta(Jm+h)\bigr).

Solutions describe possible equilibrium magnetizations; global minimizers of Φβ,h\Phi_{\beta,h} determine the thermodynamic phase.

Phase transition and spontaneous magnetization

At zero field h=0h=0:

  • For T>TcT>T_c (equivalently βJ<1\beta J<1), the only solution is m=0m=0 and it is the unique minimizer of Φβ,0\Phi_{\beta,0}.
  • For T<TcT<T_c (equivalently βJ>1\beta J>1), there are two symmetric nonzero minimizers ±m(T)\pm m_*(T) solving m=tanh(βJm). m_*=\tanh(\beta J m_*). This is the appearance of with magnetization as the .

The critical temperature is

Tc=JkB. T_c=\frac{J}{k_B}.

This provides a clean mean-field example of a .

Susceptibility and Curie–Weiss law

For T>TcT>T_c and small hh, linearizing m=tanh(β(Jm+h))m=\tanh(\beta(Jm+h)) gives

(1βJ)mβh,χ:=mhh=0β1βJ=1kB(TTc). (1-\beta J)m \approx \beta h, \qquad\Rightarrow\qquad \chi := \left.\frac{\partial m}{\partial h}\right|_{h=0} \approx \frac{\beta}{1-\beta J} =\frac{1}{k_B(T-T_c)}.

Thus the susceptibility diverges as TTcT\downarrow T_c (from above).

Large-deviation viewpoint

The reduction to a one-dimensional variational problem reflects concentration of mNm_N and can be formulated as a large-deviation principle for magnetization (see ), where Φβ,h(m)\Phi_{\beta,h}(m) plays the role of a rate-function-like effective potential (up to constants).