KMS imaginary-time periodicity

For a β-KMS equilibrium state, real-time correlation functions extend analytically to a complex-time strip and satisfy a β-periodicity (KMS boundary) relation in imaginary time.
KMS imaginary-time periodicity

Statement

Let (A,τt)(\mathcal A,\tau_t) be a quantum dynamical system (a CC^*-algebra A\mathcal A with a strongly continuous one-parameter group of *-automorphisms tτtt\mapsto \tau_t). Let ω\omega be a β\beta-KMS state at inverse temperature β>0\beta>0 (see ).

For any τ\tau-analytic observables A,BAA,B\in\mathcal A, the real-time two-point function FA,B(t):=ω ⁣(Aτt(B))F_{A,B}(t):=\omega\!\big(A\,\tau_t(B)\big), tRt\in\mathbb R, admits an analytic continuation to the strip

Sβ:={zC:0<Imz<β}, S_\beta:=\{z\in\mathbb C: 0<\operatorname{Im}z<\beta\},

continuous on the closed strip Sβ\overline{S_\beta}, with boundary values

FA,B(t)=ω ⁣(Aτt(B)),FA,B(t+iβ)=ω ⁣(τt(B)A)(tR). F_{A,B}(t)=\omega\!\big(A\,\tau_t(B)\big), \qquad F_{A,B}(t+i\beta)=\omega\!\big(\tau_t(B)\,A\big) \quad (t\in\mathbb R).

Equivalently, whenever τt+iβ(B)\tau_{t+i\beta}(B) is defined (e.g. for τ\tau-analytic BB),

ω ⁣(Aτt+iβ(B))=ω ⁣(τt(B)A),tR. \omega\!\big(A\,\tau_{t+i\beta}(B)\big)=\omega\!\big(\tau_t(B)\,A\big), \quad t\in\mathbb R.

In particular (take t=0t=0),

ω ⁣(Aτiβ(B))=ω(BA), \omega\!\big(A\,\tau_{i\beta}(B)\big)=\omega(BA),

which is the imaginary-time “β\beta-periodicity” relation (a shift by iβi\beta in time corresponds to moving the second observable past the first).

Key hypotheses

  • β>0\beta>0.
  • (A,τt)(\mathcal A,\tau_t) is a CC^*-dynamical system.
  • ω\omega is a β\beta-KMS state for τt\tau_t ( ).
  • A,BA,B belong to the τ\tau-analytic subalgebra (so τz(B)\tau_z(B) is meaningful for complex zz in the strip).

Main conclusions

  • Analyticity in complex time: tω(Aτt(B))t\mapsto \omega(A\tau_t(B)) extends to an analytic function on the strip 0<Imz<β0<\operatorname{Im}z<\beta.

  • Imaginary-time boundary relation: the values on the upper boundary Imz=β\operatorname{Im}z=\beta match the lower boundary Imz=0\operatorname{Im}z=0 after a cyclic permutation of operators:

    ω(Aτt+iβ(B))=ω(τt(B)A). \omega(A\tau_{t+i\beta}(B))=\omega(\tau_t(B)A).
  • Endpoint condition at imaginary time β\beta: ω(Aτiβ(B))=ω(BA)\omega(A\tau_{i\beta}(B))=\omega(BA).

Proof idea / significance

Finite-dimensional (Gibbs) case.
Let HH be the Hamiltonian and τt(B)=eitHBeitH\tau_t(B)=e^{itH}Be^{-itH}. Let ρβ=eβH/Zβ\rho_\beta=e^{-\beta H}/Z_\beta be the Gibbs density operator ( ), and define

FA,B(z)=Tr ⁣(ρβAeizHBeizH). F_{A,B}(z)=\operatorname{Tr}\!\big(\rho_\beta\,A\,e^{izH}Be^{-izH}\big).

Because zeizHz\mapsto e^{izH} is entire, FA,B(z)F_{A,B}(z) is analytic in zz. Evaluating at z=t+iβz=t+i\beta and using ei(t+iβ)H=eitHeβHe^{i(t+i\beta)H}=e^{itH}e^{-\beta H} together with cyclicity of the trace gives the boundary identity

FA,B(t+iβ)=Tr ⁣(ρβeitHBeitHA)=ω(τt(B)A), F_{A,B}(t+i\beta)=\operatorname{Tr}\!\big(\rho_\beta\,e^{itH}Be^{-itH}\,A\big)=\omega(\tau_t(B)A),

which is exactly the KMS imaginary-time periodicity.

Why it matters.
This boundary relation is the conceptual basis of the imaginary-time (Matsubara) formalism: equilibrium correlation functions can be studied as analytic functions on a strip and, after Wick rotation, as functions on an imaginary-time circle of circumference β\beta (with the KMS cyclic permutation at the “cut”).