Classical harmonic oscillator in the canonical ensemble

Phase-space partition function and thermodynamics of a classical harmonic oscillator; a standard illustration of equipartition.
Classical harmonic oscillator in the canonical ensemble

Model

Consider a one-dimensional classical harmonic oscillator with coordinate qRq\in\mathbb{R} and momentum pRp\in\mathbb{R}, with Hamiltonian

H(p,q)=p22m+12mω2q2. H(p,q)=\frac{p^2}{2m}+\frac12 m\omega^2 q^2 .

We place the system in the at inverse temperature β=1/(kBT)\beta=1/(k_B T).

Canonical partition function

Using the classical phase-space definition of the , with the usual 1/h1/h normalization,

Z1(β)=1hRReβH(p,q)dpdq. Z_1(\beta)=\frac{1}{h}\int_{\mathbb{R}}\int_{\mathbb{R}} e^{-\beta H(p,q)}\,dp\,dq .

The Gaussian integrals factor:

Reβp2/(2m)dp=2πmβ,Reβmω2q2/2dq=2πβmω2. \int_{\mathbb{R}} e^{-\beta p^2/(2m)}\,dp=\sqrt{\frac{2\pi m}{\beta}},\qquad \int_{\mathbb{R}} e^{-\beta m\omega^2 q^2/2}\,dq=\sqrt{\frac{2\pi}{\beta m\omega^2}}.

Hence

Z1(β)=1h2πβω=1βω, Z_1(\beta)=\frac{1}{h}\,\frac{2\pi}{\beta\omega}=\frac{1}{\beta\hbar\omega},

using h=2πh=2\pi\hbar. (Changing the phase-space normalization shifts FF and SS by constants, but does not change UU or CVC_V.)

Thermodynamic functions

The is

F(β)=β1lnZ1(β)=kBTln(βω). F(\beta)=-\beta^{-1}\ln Z_1(\beta)=k_B T\,\ln(\beta\hbar\omega).

The is

U(β)=βlnZ1(β)=1β=kBT. U(\beta)=-\frac{\partial}{\partial\beta}\ln Z_1(\beta)=\frac{1}{\beta}=k_B T .

The (canonical identity S=kB(lnZ+βU)S=k_B(\ln Z+\beta U)) is

S(β)=kB(lnZ1(β)+βU(β))=kB(1ln(βω)). S(\beta)=k_B\bigl(\ln Z_1(\beta)+\beta U(\beta)\bigr)=k_B\Bigl(1-\ln(\beta\hbar\omega)\Bigr).

The heat capacity at constant volume (see ) is

CV=(UT)=kB. C_V=\left(\frac{\partial U}{\partial T}\right)=k_B .

Equipartition and basic averages

As under the canonical Gibbs density, equipartition yields

p22m=12kBT,12mω2q2=12kBT, \Bigl\langle \frac{p^2}{2m}\Bigr\rangle=\frac12 k_B T,\qquad \Bigl\langle \frac12 m\omega^2 q^2\Bigr\rangle=\frac12 k_B T,

so

p2=mkBT,q2=kBTmω2. \langle p^2\rangle = m k_B T,\qquad \langle q^2\rangle = \frac{k_B T}{m\omega^2}.

Many independent oscillators

For NN independent (distinguishable) classical oscillators of the same frequency,

ZN(β)=(Z1(β))N,UN=NkBT,CV=NkB. Z_N(\beta)=\bigl(Z_1(\beta)\bigr)^N,\qquad U_N = N k_B T,\qquad C_V = N k_B.