Chernoff bounding lemma

Exponential-moment (Laplace transform) bounds for tail probabilities: P(X ≥ a) ≤ e^{-t a} E[e^{tX}] and optimization over t.
Chernoff bounding lemma

Definitions and notation

Statement

Let XX be a real-valued random variable. Fix aRa\in\mathbb R.

  1. Upper tail. For any t>0t>0 such that E[etX]<\mathbb E[e^{tX}]<\infty,

    P(Xa)etaE[etX]. \mathbb P(X \ge a) \le e^{-t a}\,\mathbb E[e^{tX}].
  2. Lower tail. For any t<0t<0 such that E[etX]<\mathbb E[e^{tX}]<\infty,

    P(Xa)etaE[etX]. \mathbb P(X \le a) \le e^{-t a}\,\mathbb E[e^{tX}].

Equivalently, for the upper tail,

P(Xa)inft>0exp ⁣(ta+logE[etX]), \mathbb P(X \ge a) \le \inf_{t>0}\exp\!\big(-t a + \log \mathbb E[e^{tX}]\big),

whenever the infimum is over tt with finite exponential moment.

Key hypotheses and conclusions

Hypotheses

  • Exponential moment exists at the chosen tilt tt: E[etX]<\mathbb E[e^{tX}]<\infty.
  • t>0t>0 for upper tails, t<0t<0 for lower tails.

Conclusions

  • Tail probabilities are controlled by exponential moments.
  • Optimizing over tt yields the tightest Chernoff bound available from the moment generating function (often expressed via a Legendre transform of logE[etX]\log \mathbb E[e^{tX}]).

Proof idea / significance

Apply Markov’s inequality to the nonnegative random variable etXe^{tX}:

P(Xa)=P(etXeta)etaE[etX]. \mathbb P(X\ge a)=\mathbb P(e^{tX}\ge e^{t a}) \le e^{-t a}\,\mathbb E[e^{tX}].

The optimized bound connects directly to large deviations: the function tlogE[etX]t\mapsto \log \mathbb E[e^{tX}] is convex, and its Legendre transform often appears as the candidate in a .

In statistical mechanics, the same mechanism controls fluctuations of extensive observables via exponential tilting of ensembles.