Quantum partition function

Canonical partition function of a finite quantum system: Z(β)=Tr(e^{-βH}).
Quantum partition function

Let H\mathcal H be a finite-dimensional Hilbert space and let HH be the Hamiltonian ( ), a self-adjoint operator on H\mathcal H.

For inverse temperature β>0\beta>0 ( ), the quantum (canonical) partition function is

Z(β)  =  Tr ⁣(eβH), Z(\beta)\;=\;\operatorname{Tr}\!\big(e^{-\beta H}\big),

where Tr\operatorname{Tr} is the operator trace ( ).

If HH has eigenvalues {En}\{E_n\} (counting multiplicity), then

Z(β)  =  neβEn. Z(\beta)\;=\;\sum_n e^{-\beta E_n}.

The partition function normalizes the via ρβ=eβH/Z(β)\rho_\beta = e^{-\beta H}/Z(\beta).

Physical interpretation

Z(β)Z(\beta) is the normalization constant that makes thermal probabilities sum to one, and it is the generator of equilibrium thermodynamics for the canonical ensemble. It is the quantum analog of the classical .

Through Z(β)Z(\beta) one obtains the equilibrium Helmholtz free energy ( ), internal energy, entropy, and response coefficients.

Key properties

  1. Positivity and finiteness (finite systems).
    In finite dimension, eβHe^{-\beta H} is positive and trace-class automatically, so Z(β)(0,)Z(\beta)\in(0,\infty) for every β>0\beta>0.

  2. Energy-shift covariance.
    If H=H+cIH' = H + cI for a scalar cc, then

    ZH(β)  =  eβcZH(β). Z_{H'}(\beta)\;=\;e^{-\beta c} Z_H(\beta).

    Consequently, the Gibbs state itself is invariant under adding a constant to energy (since the factor cancels in ρβ\rho_\beta).

  3. Free energy from logZ\log Z.
    The equilibrium free energy is

    F(β)  =  β1logZ(β), F(\beta)\;=\;-\beta^{-1}\log Z(\beta),

    matching .

  4. Thermodynamic derivatives (finite-dimensional identities).
    Define the equilibrium mean energy

    U(β)  =  Tr(ρβH),ρβ=eβHZ(β). U(\beta)\;=\;\operatorname{Tr}(\rho_\beta H), \qquad \rho_\beta=\frac{e^{-\beta H}}{Z(\beta)}.

    Then

    U(β)  =  ddβlogZ(β). U(\beta)\;=\;-\frac{d}{d\beta}\log Z(\beta).

    More generally, if H(λ)=H0+λVH(\lambda)=H_0+\lambda V, then

    λlogZ(β,λ)  =  βVβ,λ, \frac{\partial}{\partial\lambda}\log Z(\beta,\lambda)\;=\;-\beta\,\langle V\rangle_{\beta,\lambda},

    where the expectation is the in the Gibbs state for H(λ)H(\lambda).

  5. Factorization for independent subsystems.
    If H=HAHB\mathcal H=\mathcal H_A\otimes\mathcal H_B and

    H  =  HAIB  +  IAHB, H \;=\; H_A\otimes I_B \;+\; I_A\otimes H_B,

    then

    Z(β)  =  ZA(β)ZB(β). Z(\beta)\;=\;Z_A(\beta)\,Z_B(\beta).

    This is the canonical statement that noninteracting systems have additive free energy.

  6. Convexity and stability.
    The map βlogZ(β)\beta\mapsto \log Z(\beta) is convex. Equivalently, U(β)U(\beta) is decreasing in β\beta and the heat capacity is nonnegative in the canonical ensemble (in finite dimension).

  7. Noncommuting Hamiltonian bounds.
    When splitting a Hamiltonian into noncommuting parts, trace inequalities such as the yield useful estimates of Z(β)Z(\beta) and hence of F(β)F(\beta).