Quantum expectation value

Expectation of an observable A in state ρ: ⟨A⟩=Tr(ρA); in equilibrium ⟨A⟩β=Tr(ρβA).
Quantum expectation value

Let H\mathcal H be a finite-dimensional Hilbert space and let AA be an observable, represented as a self-adjoint element of the observable algebra ( ). Let ρ\rho be a quantum state given by a density operator ( ; compare ).

The expectation value of AA in state ρ\rho is

Aρ  =  Tr(ρA), \langle A\rangle_\rho \;=\; \operatorname{Tr}(\rho A),

where Tr\operatorname{Tr} is the operator trace ( ).

In thermal equilibrium at inverse temperature β>0\beta>0 ( ), one typically uses the Gibbs state ( ) ρβ\rho_\beta and writes

Aβ  =  Tr(ρβA). \langle A\rangle_\beta \;=\; \operatorname{Tr}(\rho_\beta A).

This is the quantum analogue of the classical ensemble average ( ).

Physical interpretation

Aρ\langle A\rangle_\rho is the theoretical prediction for the average outcome of many measurements of the observable AA on identically prepared systems in state ρ\rho. In equilibrium, Aβ\langle A\rangle_\beta is the thermal average at temperature T=(kBβ)1T=(k_B\beta)^{-1} (see and ).

Key properties

  1. Linearity.
    For scalars a,ba,b and observables A,BA,B,

    aA+bBρ  =  aAρ+bBρ. \langle aA+bB\rangle_\rho \;=\; a\langle A\rangle_\rho + b\langle B\rangle_\rho.
  2. Normalization and reality.
    Iρ=1\langle I\rangle_\rho = 1. If AA is self-adjoint, then Aρ\langle A\rangle_\rho is real.

  3. Positivity.
    If AA is positive semidefinite, then Aρ0\langle A\rangle_\rho \ge 0. In particular, for a projector PP, Pρ\langle P\rangle_\rho is the probability that the corresponding yes/no measurement yields “yes”.

  4. Bounds by operator norm.
    In finite dimension,

    Aρ    A, |\langle A\rangle_\rho|\;\le\;\|A\|,

    where A\|A\| is the operator norm (see for context).

  5. Pure-state specialization.
    If ρ=ψψ\rho=|\psi\rangle\langle\psi| is a pure state ( ), then

    Aρ  =  ψAψ. \langle A\rangle_\rho \;=\;\langle\psi|A|\psi\rangle.
  6. Parameter derivatives in Gibbs equilibrium.
    If the Hamiltonian depends on a parameter λ\lambda via H(λ)=H0+λVH(\lambda)=H_0+\lambda V, then the quantum partition function ( ) satisfies

    λlogZ(β,λ)  =  βVβ,λ. \frac{\partial}{\partial\lambda}\log Z(\beta,\lambda)\;=\;-\beta\,\langle V\rangle_{\beta,\lambda}.

    Equivalently, the equilibrium free energy ( ) obeys

    λF(β,λ)  =  Vβ,λ. \frac{\partial}{\partial\lambda}F(\beta,\lambda)\;=\;\langle V\rangle_{\beta,\lambda}.
  7. Gateway to correlations.
    Expectations of products and time-evolved observables define correlation functions ( ), which quantify fluctuations and response beyond mean values.