Quantum Gibbs state

Thermal equilibrium state of a finite quantum system: ρβ = e^{-βH}/Tr(e^{-βH}).
Quantum Gibbs state

Let H\mathcal H be a finite-dimensional complex Hilbert space (see ) and let HH be the system Hamiltonian ( ), a self-adjoint operator on H\mathcal H.

Fix an inverse temperature β>0\beta>0 (see ). Define the quantum partition function as

Z(β)  =  Tr ⁣(eβH), Z(\beta)\;=\;\operatorname{Tr}\!\big(e^{-\beta H}\big),

using the operator trace ( ). The quantum Gibbs state at inverse temperature β\beta is the density operator

ρβ  =  eβHZ(β). \rho_\beta \;=\; \frac{e^{-\beta H}}{Z(\beta)}.

This is a state on the observable algebra ( ) given by the expectation functional

ωβ(A)  =  Tr(ρβA),AB(H). \omega_\beta(A)\;=\;\operatorname{Tr}(\rho_\beta A), \qquad A\in \mathcal B(\mathcal H).

In the language of quantum states, ρβ\rho_\beta is a thermal (compare ).

Physical interpretation

The Gibbs state describes thermal equilibrium ( ) for a system weakly coupled to a heat bath at temperature T=(kBβ)1T = (k_B\beta)^{-1} (see and ).

If HH has spectral decomposition H=nEnnnH=\sum_n E_n \,|n\rangle\langle n|, then ρβ\rho_\beta is diagonal in the energy eigenbasis with weights

pn  =  eβEnmeβEm, p_n \;=\;\frac{e^{-\beta E_n}}{\sum_m e^{-\beta E_m}},

so ρβ\rho_\beta assigns the familiar Boltzmann probabilities to energy levels.

Key properties

  1. Positivity and normalization.
    ρβ\rho_\beta is positive semidefinite and Tr(ρβ)=1\operatorname{Tr}(\rho_\beta)=1, hence it is a valid quantum state ( ).

  2. Stationarity under time evolution.
    Since ρβ\rho_\beta is a function of HH, it commutes with HH, so it is invariant under the Heisenberg dynamics generated by HH. This is one precise sense in which it represents equilibrium.

  3. Variational (free-energy) principle.
    Let S(ρ)=Tr(ρlogρ)S(\rho)=-\operatorname{Tr}(\rho\log\rho) be the von Neumann entropy ( ). Define the Helmholtz free-energy functional

    Fβ(ρ)  =  Tr(ρH)    β1S(ρ), \mathcal F_\beta(\rho)\;=\;\operatorname{Tr}(\rho H)\;-\;\beta^{-1}S(\rho),

    which matches the thermodynamic Helmholtz free energy ( ) in equilibrium. Then ρβ\rho_\beta uniquely minimizes Fβ(ρ)\mathcal F_\beta(\rho) over all density operators on H\mathcal H.

    Equivalently, for any state ρ\rho,

    Fβ(ρ)Fβ(ρβ)  =  β1D(ρρβ)    0, \mathcal F_\beta(\rho)-\mathcal F_\beta(\rho_\beta)\;=\;\beta^{-1}D(\rho\|\rho_\beta)\;\ge\;0,

    where D()D(\cdot\|\cdot) is quantum relative entropy ( ).

  4. Equilibrium free energy from the partition function.
    The equilibrium Helmholtz free energy is

    F(β)  =  β1logZ(β), F(\beta)\;=\;-\beta^{-1}\log Z(\beta),

    connecting to .

  5. High- and low-temperature limits.

    • As β0+\beta\to 0^+ (high temperature), ρβI/dimH\rho_\beta \to I/\dim\mathcal H, the maximally mixed state.
    • As β\beta\to\infty (low temperature), ρβ\rho_\beta concentrates on the ground-state subspace (ground-state projector normalized by its degeneracy).
  6. KMS characterization (finite systems).
    The Gibbs state is exactly the β\beta-KMS equilibrium state for the dynamics generated by HH (see ). This property controls the analytic/imaginary-time structure of thermal correlation functions ( ).

  7. Useful inequalities and bounds.
    Bounds on Z(β)Z(\beta) and on equilibrium free energies often use trace inequalities such as the .