1D Ising model: no phase transition at positive temperature

Transfer-matrix solution of the 1D Ising chain showing analyticity of the free energy for T>0, exponential decay of correlations, and absence of spontaneous magnetization.
1D Ising model: no phase transition at positive temperature

Prerequisites and notation

We consider spins σi{1,+1}\sigma_i\in\{-1,+1\} on a 1D ring of NN sites (periodic boundary conditions).

Example: 1D ferromagnetic Ising chain

Hamiltonian

HN(σ)  =  Ji=1Nσiσi+1    hi=1Nσi,σN+1=σ1, H_N(\sigma) \;=\; -J\sum_{i=1}^N \sigma_i\sigma_{i+1} \;-\; h\sum_{i=1}^N \sigma_i, \qquad \sigma_{N+1}=\sigma_1,

with J>0J>0 and external field hRh\in\mathbb{R}.

Transfer matrix and partition function

The canonical partition function is

ZN(β,h)=σ{±1}NeβHN(σ). Z_N(\beta,h)=\sum_{\sigma\in\{\pm1\}^N} e^{-\beta H_N(\sigma)}.

Introduce the 2×22\times 2 transfer matrix

Tσ,σ=exp ⁣(βJσσ+βh2(σ+σ)),σ,σ{±1}. T_{\sigma,\sigma'}=\exp\!\left(\beta J\,\sigma\sigma' + \frac{\beta h}{2}(\sigma+\sigma')\right), \qquad \sigma,\sigma'\in\{\pm1\}.

Then

ZN(β,h)=TrTN=λ+N+λN, Z_N(\beta,h)=\mathrm{Tr}\, T^N = \lambda_+^N + \lambda_-^N,

where the eigenvalues are

λ±=eβJcosh(βh)±e2βJsinh2(βh)+e2βJ. \lambda_{\pm} = e^{\beta J}\cosh(\beta h) \pm \sqrt{e^{2\beta J}\sinh^2(\beta h)+e^{-2\beta J}}.

Thermodynamic limit and analyticity

The (canonical) free energy per site is

f(β,h)=1βlimN1NlogZN(β,h)=1βlogλ+. f(\beta,h)= -\frac{1}{\beta}\lim_{N\to\infty}\frac{1}{N}\log Z_N(\beta,h) = -\frac{1}{\beta}\log \lambda_+.

For every β<\beta<\infty (i.e. T>0T>0), λ+>λ>0\lambda_+>\lambda_->0 and λ+\lambda_+ is a real-analytic function of (β,h)(\beta,h), hence f(β,h)f(\beta,h) is analytic for T>0T>0. In particular, there is no finite-temperature phase transition (no nonanalyticity of thermodynamic potentials), in contrast with .

No spontaneous magnetization for T>0T>0

Define magnetization per site

m(β,h)=fh(β,h). m(\beta,h)= -\frac{\partial f}{\partial h}(\beta,h).

Because f(β,h)f(\beta,h) is analytic in hh around h=0h=0 for every T>0T>0, the one-sided limits agree:

m(β,0+)=m(β,0)=0(T>0), m(\beta,0^+)=m(\beta,0^-)=0 \quad (T>0),

so there is no at positive temperature.

Exponential decay of correlations and correlation length

At h=0h=0, the two-point function satisfies (in the infinite-volume limit)

σ0σr=(tanh(βJ))r. \langle \sigma_0\sigma_r\rangle = (\tanh(\beta J))^{r}.

Thus correlations decay exponentially with

ξ(β)=1log(tanh(βJ)), \xi(\beta)=\frac{1}{-\log(\tanh(\beta J))},

which is finite for every T>0T>0 and diverges only as T0T\downarrow 0.

Interpretation via Gibbs measures

In 1D with finite-range interaction, the infinite-volume Gibbs state is unique for all T>0T>0, matching the absence of multiple equilibrium states seen in .