Jacobian matrix

Matrix of first partial derivatives of a multivariable map
Jacobian matrix

A Jacobian matrix of a map f=(f1,,fm):URmf=(f_1,\dots,f_m):U\to \mathbb{R}^m (with URnU\subseteq \mathbb{R}^n) at a point aUa\in U is the m×nm\times n matrix

Jf(a)=(fixj(a))1im,  1jn, Jf(a)=\left(\frac{\partial f_i}{\partial x_j}(a)\right)_{1\le i\le m,\;1\le j\le n},

provided these exist.

When ff is at aa, the Df(a)Df(a) is a linear map, and Jf(a)Jf(a) is the matrix that represents Df(a)Df(a) in the standard bases of Rn\mathbb{R}^n and Rm\mathbb{R}^m. For scalar-valued ff, Jf(a)Jf(a) is closely related (up to transpose conventions) to the .

Examples:

  • If f(x,y)=(x2y,sin(xy))f(x,y)=(x^2y,\sin(x-y)), then

    Jf(x,y)=(2xyx2cos(xy)cos(xy)). Jf(x,y)= \begin{pmatrix} 2xy & x^2\\ \cos(x-y) & -\cos(x-y) \end{pmatrix}.
  • If f(x,y,z)=x+y+zf(x,y,z)=x+y+z, then Jf(x,y,z)=(111)Jf(x,y,z)=\begin{pmatrix}1&1&1\end{pmatrix}.