Von Neumann entropy

Entropy of a quantum state defined as minus the trace of rho log rho.
Von Neumann entropy

Let ρ\rho be a on a finite-dimensional Hilbert space HH. The von Neumann entropy of ρ\rho is

S(ρ):=Tr(ρlogρ). S(\rho) := -\operatorname{Tr}(\rho \log \rho).

Here logρ\log \rho is defined by functional calculus via the spectral decomposition of ρ\rho (see ). By convention, eigenvalues equal to 00 contribute 0log0:=00\log 0 := 0.

Eigenvalue formula

If ρ\rho has eigenvalues p1,,pdp_1,\dots,p_d (with pi0p_i\ge 0 and ipi=1\sum_i p_i=1), then

S(ρ)=i=1dpilogpi. S(\rho) = -\sum_{i=1}^d p_i \log p_i.

Unless specified otherwise, log\log denotes the natural logarithm; changing the logarithm base rescales the entropy by a constant factor.

Basic facts

Let d=dimHd=\dim H.

  • Bounds: 0S(ρ)logd0 \le S(\rho)\le \log d.
  • Pure states: S(ρ)=0S(\rho)=0 iff ρ\rho is .
  • Maximally mixed state: S(I/d)=logdS(I/d)=\log d.
  • Unitary invariance: S(UρU)=S(ρ)S(U\rho U^\ast)=S(\rho) for any unitary UU.
  • Additivity for product states: if ρAB=ρAρB\rho_{AB}=\rho_A\otimes \rho_B, then S(ρAB)=S(ρA)+S(ρB)S(\rho_{AB})=S(\rho_A)+S(\rho_B).

Classical reduction

If ρ\rho is diagonal in some orthonormal basis with diagonal entries p1,,pdp_1,\dots,p_d, then S(ρ)S(\rho) equals the Shannon entropy of the probability vector (pi)(p_i).

Subsystems and entanglement entropy

For a bipartite state ρAB\rho_{AB}, the reduced state ρA=TrB(ρAB)\rho_A=\operatorname{Tr}_B(\rho_{AB}) is defined using the . When ρAB\rho_{AB} is pure, the quantities S(ρA)S(\rho_A) and S(ρB)S(\rho_B) coincide and quantify entanglement between AA and BB.