Variance

A measure of how spread out a random variable is around its mean.
Variance

A variance of a XX is the quantity

Var(X)=E[(XE[X])2], \operatorname{Var}(X)=\mathbb E\big[(X-\mathbb E[X])^2\big],

defined when E[X2]<\mathbb E[X^2]<\infty (so in particular the E[X]\mathbb E[X] is finite). Equivalently,

Var(X)=E[X2](E[X])2. \operatorname{Var}(X)=\mathbb E[X^2]-\big(\mathbb E[X]\big)^2.

Variance is the second centered of XX. It is also the special case Var(X)=Cov(X,X)\operatorname{Var}(X)=\operatorname{Cov}(X,X) of , and it is used to normalize into the .

Examples:

  • If XX is Bernoulli(p)(p) (so P(X=1)=p\mathbb P(X=1)=p, P(X=0)=1p\mathbb P(X=0)=1-p), then Var(X)=p(1p)\operatorname{Var}(X)=p(1-p).
  • If XN(μ,σ2)X\sim N(\mu,\sigma^2), then Var(X)=σ2\operatorname{Var}(X)=\sigma^2.