Moment generating function

Function of a real parameter defined by the expected exponential of t times a random variable
Moment generating function

A moment generating function is the MX(t)=E[etX]M_X(t)=\mathbb{E}[e^{tX}] of a real parameter tt defined for a XX on all values of tt for which the expectation is finite (often an interval containing 00).

If MX(t)M_X(t) is finite on an open interval around 00, then MX(k)(0)=E[Xk]M_X^{(k)}(0)=\mathbb{E}[X^k], linking it directly to . The closely related is logMX(t)\log M_X(t) (when defined), and the can be used when the mgf does not exist.

Examples:

  • If XN(μ,σ2)X\sim N(\mu,\sigma^2), then MX(t)=exp ⁣(μt+12σ2t2)M_X(t)=\exp\!\left(\mu t+\tfrac{1}{2}\sigma^2 t^2\right) for all real tt.
  • If XBernoulli(p)X\sim\mathrm{Bernoulli}(p), then MX(t)=(1p)+petM_X(t)=(1-p)+p\,e^{t} for all real tt.
  • If XExp(λ)X\sim\mathrm{Exp}(\lambda) with λ>0\lambda>0, then MX(t)=λλtM_X(t)=\frac{\lambda}{\lambda-t} for t<λt<\lambda.