Moment

Expected power of a random variable, used to summarize features of its distribution
Moment

A moment of order kk is an of a power of a XX, typically the raw moment E[Xk]\mathbb{E}[X^k] or the central moment E ⁣[(XE[X])k]\mathbb{E}\!\left[(X-\mathbb{E}[X])^k\right], whenever these expectations exist (equivalently, when E[Xk]<\mathbb{E}[|X|^k]<\infty).

Moments summarize aspects of the ; for instance the second central moment is the and the first raw moment is the mean E[X]\mathbb{E}[X]. When a exists in a neighborhood of zero, its derivatives recover the raw moments.

Examples:

  • If XBernoulli(p)X\sim\mathrm{Bernoulli}(p), then Xk=XX^k=X for all integers k1k\ge 1, so E[Xk]=p\mathbb{E}[X^k]=p and Var(X)=p(1p)\operatorname{Var}(X)=p(1-p).
  • If XN(0,1)X\sim N(0,1), then E[X]=0\mathbb{E}[X]=0, E[X2]=1\mathbb{E}[X^2]=1, and all odd moments are 00.
  • If XExp(λ)X\sim\mathrm{Exp}(\lambda) with λ>0\lambda>0, then E[Xk]=k!/λk\mathbb{E}[X^k]=k!/\lambda^k for integers k1k\ge 1.