Independence of sigma-algebras

A condition ensuring events measurable with respect to different sigma-algebras are independent
Independence of sigma-algebras

Two sigma-algebras are independent if, on a (Ω,F,P)(\Omega,\mathcal F,\mathbb P), sub- G1,G2F\mathcal G_1,\mathcal G_2\subseteq\mathcal F satisfy

P(AB)  =  P(A)P(B)for all AG1,  BG2. \mathbb P(A\cap B)\;=\;\mathbb P(A)\,\mathbb P(B)\quad\text{for all }A\in\mathcal G_1,\;B\in\mathcal G_2.

A family (Gi)iI(\mathcal G_i)_{i\in I} of sub-σ\sigma-algebras is independent if for every finite subset {i1,,in}I\{i_1,\dots,i_n\}\subseteq I and every choice of events AkGikA_k\in \mathcal G_{i_k},

P ⁣(k=1nAk)  =  k=1nP(Ak). \mathbb P\!\left(\bigcap_{k=1}^n A_k\right)\;=\;\prod_{k=1}^n \mathbb P(A_k).

This formalizes “independence of information”: events determined by G1\mathcal G_1 do not influence probabilities of events determined by G2\mathcal G_2. In particular, XX and YY can be characterized by independence of the generated σ\sigma-algebras σ(X)\sigma(X) and σ(Y)\sigma(Y).

Examples:

  • In two independent coin flips, let G1\mathcal G_1 be the σ\sigma-algebra generated by the first flip and G2\mathcal G_2 the σ\sigma-algebra generated by the second flip. Then G1\mathcal G_1 and G2\mathcal G_2 are independent.
  • If G2G1\mathcal G_2\subseteq \mathcal G_1 and G2\mathcal G_2 contains an event BB with P(B)(0,1)\mathbb P(B)\in(0,1), then G1\mathcal G_1 and G2\mathcal G_2 are not independent (since taking A=BA=B violates P(AB)=P(A)P(B)\mathbb P(A\cap B)=\mathbb P(A)\mathbb P(B)).