Conditional probability

Probability of an event given another event or a sigma-algebra representing available information
Conditional probability

A conditional probability is the probability of an event after restricting to information in another event or in a sub- . On a (Ω,F,P)(\Omega,\mathcal F,\mathbb P), for events A,BFA,B\in\mathcal F with P(B)>0\mathbb P(B)>0, the conditional probability of AA given BB is

P(AB)  =  P(AB)P(B). \mathbb P(A\mid B)\;=\;\frac{\mathbb P(A\cap B)}{\mathbb P(B)}.

More generally, for a sub-σ\sigma-algebra GF\mathcal G\subseteq\mathcal F, the conditional probability of AA given G\mathcal G is the G\mathcal G-measurable defined by

P(AG)  =  E[1AG], \mathbb P(A\mid \mathcal G)\;=\;\mathbb E[\mathbf 1_A\mid \mathcal G],

where E[G]\mathbb E[\cdot\mid \mathcal G] denotes .

Conditioning on an event BB can be viewed as conditioning on the σ\sigma-algebra σ(B)={,B,Bc,Ω}\sigma(B)=\{\varnothing,B,B^c,\Omega\}; conditional probability is central to and Bayesian updating.

Examples:

  • If a fair die is rolled, A={even}A=\{\text{even}\} and B={roll>3}B=\{\text{roll}>3\}, then P(AB)=2/63/6=23\mathbb P(A\mid B)=\frac{2/6}{3/6}=\frac{2}{3}.
  • If AA and BB are with P(B)>0\mathbb P(B)>0, then P(AB)=P(A)\mathbb P(A\mid B)=\mathbb P(A).
  • For a sub-σ\sigma-algebra G\mathcal G, if AGA\in\mathcal G then P(AG)=1A\mathbb P(A\mid \mathcal G)=\mathbf 1_A almost surely, while if G={,Ω}\mathcal G=\{\varnothing,\Omega\} then P(AG)=P(A)\mathbb P(A\mid \mathcal G)=\mathbb P(A).