Lebesgue measure

The standard complete translation-invariant measure on Euclidean space built from covering by rectangles.
Lebesgue measure

A Lebesgue measure on Rn\mathbb{R}^n is the λn\lambda^n obtained by applying the to the λn,\lambda^{n,*} defined by

λn,(E)=inf{k=1vol(Rk):Ek=1Rk, each Rk is a measurable rectangle}, \lambda^{n,*}(E) =\inf\left\{\sum_{k=1}^\infty \operatorname{vol}(R_k)\,:\, E\subseteq \bigcup_{k=1}^\infty R_k,\ \text{each } R_k \text{ is a measurable rectangle}\right\},

where a is typically a half-open box R=i=1n(ai,bi]R=\prod_{i=1}^n (a_i,b_i] and

vol(R)=i=1n(biai). \operatorname{vol}(R)=\prod_{i=1}^n (b_i-a_i).

A set ERnE\subseteq \mathbb{R}^n is Lebesgue measurable if it is a for λn,\lambda^{n,*}, and then λn(E):=λn,(E)\lambda^n(E):=\lambda^{n,*}(E).

Lebesgue measure is the foundational example of a on Euclidean space and is the standard reference for notions like and .

Examples:

  • On R\mathbb{R}, λ1((a,b))=ba\lambda^1((a,b))=b-a for any open interval (a,b)(a,b).
  • In Rn\mathbb{R}^n, λn ⁣(i=1n(ai,bi])=i=1n(biai)\lambda^n\!\left(\prod_{i=1}^n (a_i,b_i]\right)=\prod_{i=1}^n (b_i-a_i) for any measurable rectangle.
  • Any countable subset of Rn\mathbb{R}^n (for example, Q[0,1]\mathbb{Q}\cap[0,1]) has Lebesgue measure 00.