Convergence in $L^p$

Norm convergence in an Lp space.
Convergence in LpL^p

A convergence in LpL^p is norm convergence in a . Let (X,A,μ)(X,\mathcal{A},\mu) be a and let 1p<1\le p<\infty. A (fn)(f_n) in Lp(X)L^p(X) converges in LpL^p to fLp(X)f\in L^p(X) if

fnfp0as n, \|f_n-f\|_p \to 0 \quad \text{as } n\to\infty,

where p\|\cdot\|_p is the . For p=p=\infty, one defines convergence in LL^\infty by fnf0\|f_n-f\|_\infty\to 0, where \|\cdot\|_\infty is the essential supremum norm (see ).

Convergence in LpL^p controls the size of the error in an averaged sense. In particular, for 1p<1\le p<\infty the estimate

μ({fnf>ε})εpfnfpp \mu(\{|f_n-f|>\varepsilon\}) \le \varepsilon^{-p}\|f_n-f\|_p^p

shows that convergence in LpL^p implies .

Examples:

  • On ([0,1],B,λ)([0,1],\mathcal{B},\lambda), the functions fn(x)=xnf_n(x)=x^n satisfy fn0f_n\to 0 in LpL^p for every 1p<1\le p<\infty since

    fnpp=01xnpdx=1np+10. \|f_n\|_p^p=\int_0^1 x^{np}\,dx=\frac{1}{np+1}\to 0.
  • On ([0,1],B,λ)([0,1],\mathcal{B},\lambda) and for fixed 1p<1\le p<\infty, the functions gn=n1/p1[0,1/n]g_n = n^{1/p}\mathbf{1}_{[0,1/n]} satisfy gn0g_n\to 0 in measure, but not in LpL^p, because

    gnpp=01/nndx=1 \|g_n\|_p^p = \int_0^{1/n} n\,dx = 1

    for all nn.