Rank

The rank of a linear map or matrix is the dimension of its image.
Rank

Let T:VWT:V\to W be a linear map between vector spaces over a field F\mathbb{F}. The rank of TT is

rank(T)  :=  dim(imT), \operatorname{rank}(T) \;:=\; \dim(\operatorname{im} T),

where imT={T(v):vV}W\operatorname{im}T=\{T(v):v\in V\}\subseteq W.

If AA is an m×nm\times n matrix over F\mathbb{F}, its rank is the rank of the associated linear map xAxx\mapsto Ax, i.e.

rank(A)  =  dim(column space of A). \operatorname{rank}(A) \;=\; \dim(\text{column space of }A).

Equivalent characterizations (matrices)

For an m×nm\times n matrix AA, the following numbers are equal:

  • dim(\dim(span of the columns of A)A),
  • dim(\dim(span of the rows of A)A),
  • the number of pivots in a row-reduced echelon form of AA,
  • the largest integer rr such that AA has an r×rr\times r minor with nonzero determinant.

In particular,

0rank(A)min(m,n). 0 \le \operatorname{rank}(A) \le \min(m,n).

Rank–nullity

If VV is finite-dimensional, the kernel (null space) kerT={vV:T(v)=0}\ker T = \{v\in V : T(v)=0\} satisfies

dimV  =  rank(T)  +  dim(kerT). \dim V \;=\; \operatorname{rank}(T) \;+\; \dim(\ker T).

Example

For

A=(123246), A=\begin{pmatrix} 1&2&3\\ 2&4&6 \end{pmatrix},

the second row is 22 times the first, so the row (and column) spaces are 11-dimensional, hence rank(A)=1\operatorname{rank}(A)=1.