Inner product

A positive-definite product on a vector space that defines lengths and angles.
Inner product

An inner product on a VV over F=R\mathbb{F}=\mathbb{R} or C\mathbb{C} is a map

,:V×VF \langle\cdot,\cdot\rangle:V\times V\to\mathbb{F}

such that for all u,v,wVu,v,w\in V and a,bFa,b\in\mathbb{F}:

au+bw,v=au,v+bw,v,u,v=v,u,v,v0 and v,v=0    v=0. \langle au+bw,\,v\rangle=a\langle u,v\rangle+b\langle w,v\rangle,\qquad \langle u,v\rangle=\overline{\langle v,u\rangle},\qquad \langle v,v\rangle\ge 0\ \text{and }\langle v,v\rangle=0\iff v=0.

An inner product is closely related to a (or sesquilinear form in the complex case). It induces a via v=v,v\|v\|=\sqrt{\langle v,v\rangle} and defines through the condition u,v=0\langle u,v\rangle=0.

Examples:

  • On Rn\mathbb{R}^n, the standard dot product x,y=i=1nxiyi\langle x,y\rangle=\sum_{i=1}^n x_i y_i is an inner product.
  • On Cn\mathbb{C}^n, the Hermitian product x,y=i=1nxiyi\langle x,y\rangle=\sum_{i=1}^n x_i\overline{y_i} is an inner product.
  • If WW is a symmetric positive-definite matrix, then x,y=xTWy\langle x,y\rangle=x^\mathsf{T}Wy defines an inner product on Rn\mathbb{R}^n.