Root space

The eigenspace g_α for the adjoint action of a Cartan subalgebra corresponding to a root α.
Root space

Let g\mathfrak g be a complex semisimple Lie algebra and hg\mathfrak h\subset\mathfrak g a . For αh\alpha\in\mathfrak h^*, the root space (more generally, the α\alpha-weight space for adh\mathrm{ad}|_{\mathfrak h}) is

gα  =  {Xg:[H,X]=α(H)X for all Hh}. \mathfrak g_\alpha \;=\;\{X\in\mathfrak g : [H,X]=\alpha(H)\,X\ \text{for all }H\in\mathfrak h\}.

If α0\alpha\neq 0 and gα0\mathfrak g_\alpha\neq 0, then α\alpha is a and gα\mathfrak g_\alpha is its root space.

These spaces interact well with the Lie bracket: if XgαX\in\mathfrak g_\alpha and YgβY\in\mathfrak g_\beta, then

[H,[X,Y]]=(α(H)+β(H))[X,Y]for all Hh, [H,[X,Y]] = (\alpha(H)+\beta(H))\,[X,Y]\quad\text{for all }H\in\mathfrak h,

so [gα,gβ]gα+β[\mathfrak g_\alpha,\mathfrak g_\beta]\subseteq \mathfrak g_{\alpha+\beta} (interpreting gα+β=0\mathfrak g_{\alpha+\beta}=0 if α+β\alpha+\beta is not a weight). This is one of the structural inputs for the .

Concrete calculation (the sl2\mathfrak{sl}_2 case).
Let g=sl2(C)\mathfrak g=\mathfrak{sl}_2(\mathbb C) (see ) with basis

H=(1001),E=(0100),F=(0010). H=\begin{pmatrix}1&0\\0&-1\end{pmatrix},\quad E=\begin{pmatrix}0&1\\0&0\end{pmatrix},\quad F=\begin{pmatrix}0&0\\1&0\end{pmatrix}.

Take h=CH\mathfrak h=\mathbb C\cdot H. Then

[H,E]=2E,[H,F]=2F. [H,E]=2E,\qquad [H,F]=-2F.

Define αh\alpha\in\mathfrak h^* by α(H)=2\alpha(H)=2. Then gα=CE\mathfrak g_\alpha=\mathbb C\cdot E and gα=CF\mathfrak g_{-\alpha}=\mathbb C\cdot F, giving the familiar decomposition

sl2(C)=hgαgα. \mathfrak{sl}_2(\mathbb C)=\mathfrak h\oplus \mathfrak g_\alpha\oplus \mathfrak g_{-\alpha}.