Lie algebra of a product

The Lie algebra of a product Lie group is the direct sum of the Lie algebras.
Lie algebra of a product

Let G,HG,H be , and consider their G×HG\times H.

Theorem

There is a natural Lie algebra isomorphism

Lie(G×H)    Lie(G)Lie(H), \operatorname{Lie}(G\times H)\;\cong\; \operatorname{Lie}(G)\oplus \operatorname{Lie}(H),

where the right-hand side is the with bracket

[(X1,Y1),(X2,Y2)]=([X1,X2],[Y1,Y2]). [(X_1,Y_1),(X_2,Y_2)] = \bigl([X_1,X_2],[Y_1,Y_2]\bigr).

Construction (canonical identification)

Using the definition , we have

T(eG,eH)(G×H)TeGGTeHH. T_{(e_G,e_H)}(G\times H)\cong T_{e_G}G \oplus T_{e_H}H.

Under this identification, the Lie bracket on Lie(G×H)\operatorname{Lie}(G\times H) (defined via brackets of left-invariant vector fields) becomes the componentwise bracket above.

Example

For matrix groups, this is visible directly: if GGL(n,R)G\subset \mathrm{GL}(n,\Bbb R) and HGL(m,R)H\subset \mathrm{GL}(m,\Bbb R), then one model of G×HG\times H sits inside GL(n+m,R)\mathrm{GL}(n+m,\Bbb R) as block-diagonal matrices diag(A,B)\mathrm{diag}(A,B). Differentiating at the identity shows

Lie(G×H)={(X00Y):XLie(G), YLie(H)}Lie(G)Lie(H), \operatorname{Lie}(G\times H) = \left\{\begin{pmatrix} X & 0\\ 0 & Y\end{pmatrix} : X\in \operatorname{Lie}(G),\ Y\in \operatorname{Lie}(H)\right\} \cong \operatorname{Lie}(G)\oplus \operatorname{Lie}(H),

and commutators are computed blockwise.