Example: the Heisenberg Lie algebra

A 3D nilpotent Lie algebra with basis $X,Y,Z$ and bracket $[X,Y]=Z$.
Example: the Heisenberg Lie algebra

Let h3\mathfrak h_3 be the 3-dimensional real Lie algebra with basis {X,Y,Z}\{X,Y,Z\} and brackets

[X,Y]=Z,[X,Z]=[Y,Z]=0. [X,Y]=Z,\qquad [X,Z]=[Y,Z]=0.

This is the simplest non-abelian nilpotent example (see ).

Concrete matrix model

Inside gl3(R)\mathfrak{gl}_3(\mathbb R), set

X=E12,Y=E23,Z=E13, X = E_{12},\quad Y = E_{23},\quad Z = E_{13},

where EijE_{ij} has a 11 in the (i,j)(i,j) entry and 00 otherwise. Using the commutator bracket,

[E12,E23]=E12E23E23E12=E130=E13, [E_{12},E_{23}] = E_{12}E_{23}-E_{23}E_{12} = E_{13}-0 = E_{13},

and one checks [E12,E13]=[E23,E13]=0[E_{12},E_{13}]=[E_{23},E_{13}]=0. Hence this realizes h3\mathfrak h_3 as strictly upper triangular 3×33\times 3 matrices (compare ).

Derived subalgebra and center

The is

[h3,h3]=span{Z}. [\mathfrak h_3,\mathfrak h_3] = \mathrm{span}\{Z\}.

Moreover ZZ commutes with everything, so the is

Z(h3)=span{Z}. Z(\mathfrak h_3)=\mathrm{span}\{Z\}.

Thus h3/[h3,h3]R2\mathfrak h_3/[\mathfrak h_3,\mathfrak h_3]\cong \mathbb R^2 is abelian.

Lower central and derived series (explicit)

The is

h3=γ1γ2=[γ1,γ1]=span{Z}γ3=[h3,γ2]=0, \mathfrak h_3=\gamma_1 \supset \gamma_2=[\gamma_1,\gamma_1]=\mathrm{span}\{Z\} \supset \gamma_3=[\mathfrak h_3,\gamma_2]=0,

so h3\mathfrak h_3 is nilpotent of class 22.

The is

h3(1)=[h3,h3]=span{Z},h3(2)=[span{Z},span{Z}]=0, \mathfrak h_3^{(1)}=[\mathfrak h_3,\mathfrak h_3]=\mathrm{span}\{Z\},\qquad \mathfrak h_3^{(2)}=[\mathrm{span}\{Z\},\mathrm{span}\{Z\}]=0,

so h3\mathfrak h_3 is solvable (compare ).

Context. Exponentiating h3\mathfrak h_3 yields the , a central extension of R2\mathbb R^2 by R\mathbb R that is fundamental in geometry and representation theory.