Coadjoint representation of a Lie algebra

The dual of the adjoint representation, acting on the dual space g*.
Coadjoint representation of a Lie algebra

Let g\mathfrak{g} be a and let g\mathfrak{g}^* be its dual vector space.

Definition. The coadjoint representation is the linear map

ad:gEnd(g) \mathrm{ad}^*:\mathfrak{g}\to \mathrm{End}(\mathfrak{g}^*)

defined by dualizing the ad:gEnd(g)\mathrm{ad}:\mathfrak{g}\to \mathrm{End}(\mathfrak{g}): for XgX\in \mathfrak{g} and g\ell\in \mathfrak{g}^*,

adX()=adX. \mathrm{ad}^*_X(\ell) = -\,\ell\circ \mathrm{ad}_X.

Equivalently, using the natural pairing ,Y=(Y)\langle\ell,Y\rangle=\ell(Y),

adX,Y=,[X,Y]for all Yg. \langle \mathrm{ad}^*_X\ell,\, Y\rangle = -\langle \ell,\,[X,Y]\rangle \quad \text{for all } Y\in \mathfrak{g}.

Key point. The minus sign ensures ad\mathrm{ad}^* is a , i.e. [adX,adY]=ad[X,Y][\mathrm{ad}^*_X,\mathrm{ad}^*_Y]=\mathrm{ad}^*_{[X,Y]}.

Context. Coadjoint orbits in g\mathfrak{g}^* (via the integrated ) carry canonical symplectic structures and play a central role in geometric representation theory (Kirillov’s orbit method). In the semisimple case, identifying gg\mathfrak{g}\cong\mathfrak{g}^* via the relates coadjoint and adjoint pictures.