Log moment generating function

The logarithm of the moment generating function, viewed as a convex functional of the parameter.
Log moment generating function

A log moment generating function (log-MGF) of an Rd\mathbb R^d-valued XX is the function Λ:Rd(,]\Lambda:\mathbb R^d\to(-\infty,\infty] defined by

Λ(θ)=logE[eθ,X], \Lambda(\theta)=\log \mathbb E\big[e^{\langle \theta, X\rangle}\big],

where θ,X\langle\theta,X\rangle is the Euclidean inner product and the expectation is taken in the sense of . Equivalently, if μ\mu is the of XX, then

Λ(θ)=logRdeθ,xμ(dx), \Lambda(\theta)=\log\int_{\mathbb R^d} e^{\langle\theta,x\rangle}\,\mu(dx),

where the integral is a special case of the .

The log-MGF is a central object in large deviations: it is convex and encodes exponential moment growth, and its convex dual gives the . In particular, for sums of an , the log-MGF is the starting point for and the .

Examples:

  • If XN(0,σ2)X\sim \mathcal N(0,\sigma^2) on R\mathbb R, then Λ(θ)=σ2θ22\Lambda(\theta)=\frac{\sigma^2\theta^2}{2} for all θR\theta\in\mathbb R.
  • If XBernoulli(p)X\sim \mathrm{Bernoulli}(p) on {0,1}\{0,1\}, then Λ(θ)=log((1p)+peθ)\Lambda(\theta)=\log\big((1-p)+p e^{\theta}\big) for all θR\theta\in\mathbb R.