Cramér's theorem

Large deviations for empirical means of independent identically distributed real random variables.
Cramér’s theorem

Cramér’s theorem: Let (Xi)i1(X_i)_{i\ge 1} be an of real-valued . Assume the M(θ)=E[eθX1]M(\theta)=\mathbb{E}[e^{\theta X_1}] is finite for all θ\theta in some open interval containing 00, and let Λ(θ)=logM(θ)\Lambda(\theta)=\log M(\theta) be the . Define the empirical mean Xn=1ni=1nXi\overline X_n=\frac{1}{n}\sum_{i=1}^n X_i. Then (Xn)(\overline X_n) satisfies a on R\mathbb{R} with speed nn and

I(x)=supθR{θxΛ(θ)}. I(x)=\sup_{\theta\in\mathbb{R}}\bigl\{\theta x-\Lambda(\theta)\bigr\}.

The rate function II is the , i.e. the ( ) of Λ\Lambda.