Cramér transform

The convex dual of a log moment generating function, giving a canonical large-deviation rate function.
Cramér transform

A Cramér transform associated with a log moment generating function Λ:Rd(,]\Lambda:\mathbb R^d\to(-\infty,\infty] is the function I:Rd[0,]I:\mathbb R^d\to[0,\infty] defined by

I(x)=supθRd{θ,xΛ(θ)}. I(x)=\sup_{\theta\in\mathbb R^d}\big\{\langle \theta,x\rangle-\Lambda(\theta)\big\}.

This is the of Λ\Lambda (equivalently, the of Λ\Lambda).

In large deviations, when Λ\Lambda is the of a random variable, II is the canonical candidate for the LDP of empirical means; this is made precise by and, in broader settings, by the .

Examples:

  • If Λ(θ)=σ2θ22\Lambda(\theta)=\frac{\sigma^2\theta^2}{2} on R\mathbb R (Gaussian case), then

    I(x)=x22σ2. I(x)=\frac{x^2}{2\sigma^2}.
  • If XBernoulli(p)X\sim \mathrm{Bernoulli}(p) with log-MGF Λ(θ)=log((1p)+peθ)\Lambda(\theta)=\log\big((1-p)+p e^{\theta}\big), then the Cramér transform is

    I(x)={xlog ⁣(xp)+(1x)log ⁣(1x1p),x[0,1],+,x[0,1]. I(x)= \begin{cases} x\log\!\left(\frac{x}{p}\right)+(1-x)\log\!\left(\frac{1-x}{1-p}\right), & x\in[0,1],\\ +\infty, & x\notin[0,1]. \end{cases}