Wedge product of differential forms

An alternating product that combines a -form and an -form into a (k+)-form.
Wedge product of differential forms

Let MM be a . The wedge product is the canonical bilinear product on the graded algebra of .

Definition

For αΩk(M)\alpha \in \Omega^k(M) and βΩ(M)\beta \in \Omega^\ell(M), their wedge product αβΩk+(M)\alpha\wedge\beta \in \Omega^{k+\ell}(M) is defined pointwise by the alternating product of multilinear forms on each :

(αβ)p(v1,,vk+)=1k!!σSk+sgn(σ)αp ⁣(vσ(1),,vσ(k))βp ⁣(vσ(k+1),,vσ(k+)), (\alpha\wedge\beta)_p(v_1,\dots,v_{k+\ell}) =\frac{1}{k!\,\ell!}\sum_{\sigma\in S_{k+\ell}}\operatorname{sgn}(\sigma)\, \alpha_p\!\bigl(v_{\sigma(1)},\dots,v_{\sigma(k)}\bigr)\, \beta_p\!\bigl(v_{\sigma(k+1)},\dots,v_{\sigma(k+\ell)}\bigr),

for all pMp\in M and v1,,vk+TpMv_1,\dots,v_{k+\ell}\in T_pM.

Equivalently, (αβ)p(\alpha\wedge\beta)_p is the alternation of the tensor product αpβp\alpha_p\otimes \beta_p.

Key properties

If αΩk(M)\alpha\in\Omega^k(M), βΩ(M)\beta\in\Omega^\ell(M), and γΩm(M)\gamma\in\Omega^m(M), then:

  • Bilinearity: \wedge is R\mathbb{R}-bilinear in each argument.
  • Associativity: (αβ)γ=α(βγ)(\alpha\wedge\beta)\wedge\gamma=\alpha\wedge(\beta\wedge\gamma).
  • Graded-commutativity: αβ=(1)kβα. \alpha\wedge\beta = (-1)^{k\ell}\,\beta\wedge\alpha. In particular, if kk is odd then αα=0\alpha\wedge\alpha=0.
  • Compatibility with pullback: for any F:MNF:M\to N, the satisfies F(αβ)=FαFβF^*(\alpha\wedge\beta)=F^*\alpha\wedge F^*\beta.
  • The wedge product is the product appearing in the graded Leibniz rule for the .

Examples

  1. Coordinate 1-forms on R3\mathbb{R}^3.
    With standard coordinates (x,y,z)(x,y,z), the 2-form dxdydx\wedge dy satisfies (dxdy)(x,y)=1(dx\wedge dy)(\partial_x,\partial_y)=1 and changes sign when the vectors are swapped: (dxdy)(y,x)=1(dx\wedge dy)(\partial_y,\partial_x)=-1.

  2. A wedge computation with functions.
    Let α=fdx+gdy\alpha = f\,dx + g\,dy and β=hdz\beta = h\,dz on R3\mathbb{R}^3, where f,g,hf,g,h are smooth functions. Then

    αβ=fhdxdz+ghdydz. \alpha\wedge\beta = fh\,dx\wedge dz + gh\,dy\wedge dz.
  3. Wedge of a 1-form with itself is zero (odd degree).
    On any manifold, dxdx=0dx\wedge dx=0. More generally, if η\eta is any 1-form then ηη=0\eta\wedge\eta=0 by graded-commutativity with k==1k=\ell=1.