Transgression theorem (Chern–Simons)

The difference of Chern–Weil forms for two connections is exact, with an explicit transgression form.
Transgression theorem (Chern–Simons)

Let π:PM\pi:P\to M be a . Let ω0,ω1\omega_0,\omega_1 be two on PP with curvatures Ω0,Ω1\Omega_0,\Omega_1. Let PP be an Ad-invariant homogeneous polynomial of degree kk on g\mathfrak g, and let cwP(ωi)\operatorname{cw}_P(\omega_i) be the descended Chern–Weil forms on MM as in the .

Write η:=ω1ω0\eta:=\omega_1-\omega_0 (a tensorial g\mathfrak g-valued 11-form; see ), and define a path of connections ωt:=ω0+tη\omega_t:=\omega_0+t\eta with curvature Ωt\Omega_t.

Theorem (Transgression / Chern–Simons). There exists a (2k1)(2k-1)-form CSP(ω0,ω1)Ω2k1(M)\mathrm{CS}_P(\omega_0,\omega_1)\in\Omega^{2k-1}(M) such that

dCSP(ω0,ω1)=cwP(ω1)cwP(ω0), d\,\mathrm{CS}_P(\omega_0,\omega_1)=\operatorname{cw}_P(\omega_1)-\operatorname{cw}_P(\omega_0),

where dd is the . One explicit choice is the Chern–Simons transgression form

CSP(ω0,ω1):=k01P(η,Ωt,,Ωt)dt, \mathrm{CS}_P(\omega_0,\omega_1) := k\int_0^1 P\big(\eta,\Omega_t,\dots,\Omega_t\big)\,dt,

where P(η,Ωt,,Ωt)P(\eta,\Omega_t,\dots,\Omega_t) denotes the (2k1)(2k-1)-form obtained by inserting one 11-form η\eta and (k1)(k-1) copies of the 22-form Ωt\Omega_t into the symmetric kk-linear map PP and wedging.

In particular, the de Rham class [cwP(ω)][\operatorname{cw}_P(\omega)] is independent of ω\omega.

Examples

  1. Degree 1 (abelian case). For k=1k=1 and P(X)=XP(X)=X (e.g. G=U(1)G=U(1)), cwP(ω)\operatorname{cw}_P(\omega) is just the curvature 22-form on the base, and the formula becomes cwP(ω1)cwP(ω0)=d(A1A0)\operatorname{cw}_P(\omega_1)-\operatorname{cw}_P(\omega_0)=d(A_1-A_0) in a local gauge.
  2. Degree 2 (classical 3D Chern–Simons). For a matrix group and P(X)=tr(X2)P(X)=\mathrm{tr}(X^2), the transgression gives the usual 33-form on a trivialization: CS(A)=tr ⁣(AdA+23AAA), \mathrm{CS}(A)=\mathrm{tr}\!\left(A\wedge dA+\tfrac23 A\wedge A\wedge A\right), whose exterior derivative is tr(FF)\mathrm{tr}(F\wedge F).
  3. Gauge-equivalent connections. If ω1\omega_1 is obtained from ω0\omega_0 by a gauge transformation, then cwP(ω1)cwP(ω0)\operatorname{cw}_P(\omega_1)-\operatorname{cw}_P(\omega_0) is exact; the theorem produces an explicit primitive.