Tensorial forms and ad(P)-valued forms

Equivalence between horizontal equivariant Lie-algebra-valued forms on a principal bundle and differential forms on the base with values in the adjoint bundle.
Tensorial forms and ad(P)-valued forms

Let π:PM\pi:P\to M be a over a MM, where GG is a with g\mathfrak g.

The adjoint bundle of PP is the associated vector bundle

ad(P):=P×Adg    M, \operatorname{ad}(P):=P\times_{\operatorname{Ad}}\mathfrak g \;\longrightarrow\; M,

where GG acts on g\mathfrak g by the adjoint representation Ad\operatorname{Ad}.

A g\mathfrak g-valued ωΩk(P;g)\omega\in\Omega^k(P;\mathfrak g) is called tensorial of type Ad\operatorname{Ad} if it satisfies:

  1. Horizontality: ωp(v1,,vk)=0\omega_p(v_1,\dots,v_k)=0 whenever at least one viker(dπp)v_i\in\ker(d\pi_p) (i.e., a vertical tangent vector).
  2. Equivariance: for every gGg\in G, (Rg)ω=Ad(g1)ω, (R_g)^*\omega = \operatorname{Ad}(g^{-1})\,\omega, where Rg:PPR_g:P\to P is the right action.

Write Ωtensk(P;g)\Omega^k_{\mathrm{tens}}(P;\mathfrak g) for the vector space of such tensorial forms.

Theorem (TFAE: tensorial forms vs ad(P)-valued forms)

There is a natural vector space isomorphism

Ωtensk(P;g)    Ωk ⁣(M;ad(P)). \Omega^k_{\mathrm{tens}}(P;\mathfrak g)\;\cong\;\Omega^k\!\bigl(M;\operatorname{ad}(P)\bigr).

More explicitly:

  • Given ωΩtensk(P;g)\omega\in\Omega^k_{\mathrm{tens}}(P;\mathfrak g), define αΩk(M;ad(P))\alpha\in\Omega^k(M;\operatorname{ad}(P)) by

    αx(u1,,uk)  :=  [p,  ωp(u~1,,u~k)]ad(P)x, \alpha_x(u_1,\dots,u_k)\;:=\;\bigl[p,\;\omega_p(\tilde u_1,\dots,\tilde u_k)\bigr]\in \operatorname{ad}(P)_x,

    where pPp\in P satisfies π(p)=x\pi(p)=x, and u~iTpP\tilde u_i\in T_pP are any tangent vectors with dπp(u~i)=uid\pi_p(\tilde u_i)=u_i. This is well-defined because vertical components do not affect ω\omega (horizontality) and changing pp in the fiber changes ω\omega by Ad(g1)\operatorname{Ad}(g^{-1}) (equivariance), exactly matching the associated-bundle identification.

  • Conversely, given αΩk(M;ad(P))\alpha\in\Omega^k(M;\operatorname{ad}(P)), define ωΩk(P;g)\omega\in\Omega^k(P;\mathfrak g) by requiring that for pPp\in P and viTpPv_i\in T_pP,

    απ(p)(dπpv1,,dπpvk)=[p,  ωp(v1,,vk)]ad(P)π(p). \alpha_{\pi(p)}(d\pi_p v_1,\dots,d\pi_p v_k)=\bigl[p,\;\omega_p(v_1,\dots,v_k)\bigr]\in\operatorname{ad}(P)_{\pi(p)}.

    This forces ω\omega to be horizontal, and the associated-bundle relation forces Ad\operatorname{Ad}-equivariance.

These constructions are inverse to each other and are natural with respect to bundle morphisms covering the identity on MM.

A key application is that the of a is tensorial of type Ad\operatorname{Ad}, hence canonically corresponds to an ad(P)\operatorname{ad}(P)-valued 2-form on the base.

Examples

  1. Curvature descends to the base.
    If Θ\Theta is a principal connection on PP with curvature FΘΩ2(P;g)F_\Theta\in\Omega^2(P;\mathfrak g), then FΘF_\Theta is horizontal and Ad\operatorname{Ad}-equivariant. The theorem identifies FΘF_\Theta with a unique element of Ω2(M;ad(P))\Omega^2(M;\operatorname{ad}(P)).

  2. Trivial bundle case.
    On the P=M×GP=M\times G, the adjoint bundle is canonically isomorphic to M×gM\times\mathfrak g. Under this identification, a tensorial ω\omega corresponds to an ordinary g\mathfrak g-valued form on MM (written in a chosen global section), and the correspondence is given by pullback along the section and associated-bundle identification.

  3. Scalar “basic” forms as a special case.
    If one replaces g\mathfrak g by a trivial GG-representation (so equivariance becomes GG-invariance), then horizontal GG-invariant forms on PP correspond exactly to ordinary differential forms on MM via pullback along π\pi.