Symmetric power bundle

The vector bundle whose fiber at each point is the k-th symmetric power of the original fiber.
Symmetric power bundle

Let π:EM\pi:E\to M be a smooth vector bundle of rank rr over a . For an integer k0k\ge 0, the k-th symmetric power bundle of EE is the vector bundle

SkEM S^k E \to M

defined fiberwise by

(SkE)x:=Sk(Ex), (S^k E)_x := S^k(E_x),

the kk-th symmetric power of the vector space ExE_x (i.e. the quotient of ExkE_x^{\otimes k} by the action of the symmetric group permuting factors).

In local frames, if (e1,,er)(e_1,\dots,e_r) is a local frame of EUE|_U, then the symmetrized tensors built from the eie_i give a local frame of (SkE)U(S^kE)|_U. Under a change of frame with transition matrix gg, the induced transition on SkES^kE is the symmetric power representation SkgS^k g. This can be constructed systematically from the local description of the EkE^{\otimes k}.

Functoriality holds: a bundle map Φ:EF\Phi:E\to F over idM\mathrm{id}_M induces SkΦ:SkESkFS^k\Phi:S^kE\to S^kF fiberwise.

Examples

  1. Symmetric 2-tensors. For E=TME=T^*M, the bundle S2TMS^2T^*M has sections given by symmetric covariant 2-tensor fields; a Riemannian metric is an everywhere positive-definite section of this bundle.

  2. Line bundles. If LML\to M is a line bundle, then SkLLkS^k L \cong L^{\otimes k} canonically (since there is no nontrivial symmetrization in rank 1).

  3. Trivial bundle case. If EM×FrE\cong M\times \mathbb F^r, then SkEM×Sk(Fr)S^kE\cong M\times S^k(\mathbb F^r).