Pullback of covectors

The contravariant map on cotangent spaces induced by a smooth map, defined by precomposing with the differential.
Pullback of covectors

Let F:MNF:M\to N be a between . For each pMp\in M, the gives a linear map

dFp:TpMTF(p)N dF_p:T_pM\to T_{F(p)}N

between .

Definition (pullback on a single fiber). The pullback of covectors at pp is the linear map

Fp:TF(p)NTpM F_p^*:T_{F(p)}^*N \to T_p^*M

defined by

(Fpα)(v):=α(dFp(v))for αTF(p)N,  vTpM. (F_p^*\alpha)(v):=\alpha\bigl(dF_p(v)\bigr) \quad\text{for }\alpha\in T_{F(p)}^*N,\; v\in T_pM.

Thus FpF_p^* is the dual map of dFpdF_p (it is contravariant: it goes in the opposite direction).

This construction is fiberwise for the : a covector at F(p)F(p) pulls back to a covector at pp.

Functoriality. If G:NPG:N\to P is another smooth map, then for each pMp\in M,

(GF)p=FpGF(p). (G\circ F)_p^* = F_p^*\circ G_{F(p)}^*.

If FF is a , then dFpdF_p is an isomorphism and FpF_p^* is an isomorphism with inverse given by the corresponding pullback along F1F^{-1}.

Pullback of covectors is the k=1k=1 case of the .

Examples

  1. Pulling back the standard covectors on R2\mathbb{R}^2. Let F:R2R2F:\mathbb{R}^2\to\mathbb{R}^2 be given by F(u,v)=(u2,uv)F(u,v)=(u^2,uv), and let (x,y)(x,y) be coordinates on the target. Then, viewing dxdx and dydy as smooth covector fields,

    F(dx)=d(u2)=2udu,F(dy)=d(uv)=vdu+udv. F^*(dx)=d(u^2)=2u\,du,\qquad F^*(dy)=d(uv)=v\,du+u\,dv.

    At a specific point (u,v)(u,v), this matches the fiberwise definition ααdF(u,v)\alpha\mapsto \alpha\circ dF_{(u,v)}.

  2. Inclusion of the circle. Let i:S1R2i:S^1\hookrightarrow\mathbb{R}^2 be the inclusion and parametrize S1S^1 by γ(θ)=(cosθ,sinθ)\gamma(\theta)=(\cos\theta,\sin\theta). Then

    i(dx)=sinθdθ,i(dy)=cosθdθ, i^*(dx) = -\sin\theta\,d\theta,\qquad i^*(dy)=\cos\theta\,d\theta,

    since xγ=cosθx\circ\gamma=\cos\theta and yγ=sinθy\circ\gamma=\sin\theta.

  3. Constant map. If c:MNc:M\to N is constant with value qNq\in N, then dcp=0dc_p=0 for every pp, hence cp(α)=0c_p^*(\alpha)=0 for every αTqN\alpha\in T_q^*N.