Lie bracket

A bilinear alternating operation satisfying the Jacobi identity; for vector fields it is the commutator.
Lie bracket

A Lie bracket on a real vector space g\mathfrak{g} is a bilinear map

[,]:g×gg [\,,\,]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}

such that:

  1. Alternating / skew-symmetry: [X,X]=0[X,X]=0 for all XgX\in\mathfrak{g} (equivalently [X,Y]=[Y,X][X,Y]=-[Y,X]).
  2. Jacobi identity: for all X,Y,ZgX,Y,Z\in\mathfrak{g}, [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0. [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0.

In differential geometry, there is a canonical Lie bracket on the space of on a MM: for vector fields X,YX,Y define [X,Y][X,Y] by its action on smooth functions,

[X,Y](f):=X(Y(f))Y(X(f)),fC(M). [X,Y](f) := X(Y(f)) - Y(X(f)), \qquad f\in C^\infty(M).

This produces another vector field and turns the space of vector fields into a Lie algebra.

For a GG, the Lie bracket on the is obtained by restricting the vector-field bracket to and evaluating at the identity.

Examples

  1. On M=R2M=\mathbb{R}^2 with coordinates (x,y)(x,y), the coordinate vector fields commute:

    [x,y]=0. \Big[\frac{\partial}{\partial x},\frac{\partial}{\partial y}\Big]=0.
  2. On M=RM=\mathbb{R} with coordinate xx, let X=xxX=x\frac{\partial}{\partial x} and Y=xY=\frac{\partial}{\partial x}. Then

    [X,Y]=x. [X,Y] = -\,\frac{\partial}{\partial x}.
  3. In the matrix Lie algebra gl(2,R)\mathfrak{gl}(2,\mathbb{R}) (the Lie algebra of GL(2,R)GL(2,\mathbb{R})), with bracket [A,B]=ABBA[A,B]=AB-BA, take

    A=(0100),B=(0010). A=\begin{pmatrix}0&1\\0&0\end{pmatrix},\quad B=\begin{pmatrix}0&0\\1&0\end{pmatrix}.

    Then

    [A,B]=(1001). [A,B]=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.