Local gauge transformation law for a connection

Under a change of local section, the local connection form transforms as A^g = g^{-1}Ag + g^{-1}dg.
Local gauge transformation law for a connection

Let π:PM\pi:P\to M be a with a ω\omega. Fix an open set UMU\subset M and a local section s:UPs:U\to P. The associated local connection form is

A:=sωΩ1(U;g). A:=s^*\omega\in\Omega^1(U;\mathfrak g).

Let g:UGg:U\to G be a and define a new local section by s:=sgs':=s\cdot g (right action of GG on PP).

Lemma (Local gauge transformation law). The local connection form A:=(s)ωA':=(s')^*\omega satisfies

A=Ad(g1)A+g1dg. A'=\mathrm{Ad}(g^{-1})A + g^{-1}dg.

In a matrix realization of GG, this is A=g1Ag+g1dgA' = g^{-1}Ag + g^{-1}dg. The 11-form g1dgg^{-1}dg is the pullback of the left Maurer–Cartan form and satisfies the .

Examples

  1. Abelian case (U(1)). Since Ad is trivial, the formula becomes A=A+g1dgA'=A+g^{-1}dg, matching the usual shift of a U(1)U(1) potential by an exact form locally.
  2. Constant change of section. If gg is constant, then dg=0dg=0 and A=Ad(g1)AA'=\mathrm{Ad}(g^{-1})A is just pointwise conjugation.
  3. Producing a pure gauge potential. Starting from the trivial potential A=0A=0 on a trivial bundle, the transformation gives A=g1dgA'=g^{-1}dg, a pure gauge connection.