Interior product (contraction) ι_X

Insertion of a vector field into a differential form, producing a form of one lower degree.
Interior product (contraction) ι_X

Let MM be a and let XX be a on MM. For a ωΩk(M)\omega\in\Omega^k(M), the interior product (or contraction) of ω\omega by XX is the (k1)(k-1)-form ιXωΩk1(M)\iota_X\omega\in\Omega^{k-1}(M) defined by

(ιXω)p(v1,,vk1)  :=  ωp(Xp,v1,,vk1),pM,  viTpM. (\iota_X\omega)_p(v_1,\dots,v_{k-1}) \;:=\; \omega_p(X_p,v_1,\dots,v_{k-1}), \qquad p\in M,\; v_i\in T_pM.

By convention, if k=0k=0 then ιXω:=0\iota_X\omega:=0.

The contraction satisfies the following standard identities.

  • C(M)C^\infty(M)-linearity in the vector field: for fC(M)f\in C^\infty(M),

    ιfXω=fιXω. \iota_{fX}\omega = f\,\iota_X\omega.
  • Graded derivation rule for the : if αΩp(M)\alpha\in\Omega^p(M) and βΩq(M)\beta\in\Omega^q(M), then [ \iota_X(\alpha\wedge\beta)

    (\iota_X\alpha)\wedge\beta + (-1)^p,\alpha\wedge(\iota_X\beta). ]

  • Cartan’s formula (interaction with differentiation): the of forms along XX is given by [ \mathcal{L}_X\omega

    d(\iota_X\omega)+\iota_X(d\omega), ] where dd is the .

Examples

  1. If αΩ1(M)\alpha\in\Omega^1(M) is a 11-form, then ιXα\iota_X\alpha is the smooth function α(X)C(M)\alpha(X)\in C^\infty(M) obtained by evaluating α\alpha on the vector field XX.

  2. On M=R2M=\mathbb{R}^2 with coordinates (x,y)(x,y), let ω=dxdy\omega=dx\wedge dy and X=xX=\frac{\partial}{\partial x}. Then

    ιXω=dy. \iota_X\omega = dy.
  3. On M=R3M=\mathbb{R}^3 with coordinates (x,y,z)(x,y,z), let ω=dxdydz\omega=dx\wedge dy\wedge dz and X=x+2yX=\frac{\partial}{\partial x}+2\frac{\partial}{\partial y}. Then

    ιXω=dydz2dxdz. \iota_X\omega = dy\wedge dz - 2\,dx\wedge dz.