Interior product

The contraction of a differential form with a vector field, lowering degree by one.
Interior product

Let MM be a smooth manifold, let XX be a on MM, and let ωΩk(M)\omega\in\Omega^k(M) be a with k1k\ge 1. The interior product (or contraction) of ω\omega with XX is the (k1)(k-1)-form ιXω\iota_X\omega defined by

(ιXω)p(v1,,vk1)=ωp(Xp,v1,,vk1)(pM). (\iota_X\omega)_p(v_1,\dots,v_{k-1}) = \omega_p\bigl(X_p,v_1,\dots,v_{k-1}\bigr) \qquad (p\in M).

By convention, ιXω=0\iota_X\omega=0 if k=0k=0.

The operator ιX\iota_X is R\mathbb{R}-linear in XX and is a graded derivation of degree 1-1 on the exterior algebra:

ιX(αβ)=(ιXα)β+(1)degαα(ιXβ). \iota_X(\alpha\wedge\beta)=(\iota_X\alpha)\wedge\beta+(-1)^{\deg\alpha}\alpha\wedge(\iota_X\beta).

It is linked to the by Cartan’s identity

LX=dιX+ιXd, \mathcal{L}_X=\mathrm{d}\circ\iota_X+\iota_X\circ\mathrm{d},

where d\mathrm{d} is the exterior derivative.

Examples

  1. A basic contraction in R2\mathbb{R}^2. With ω=dxdy\omega=\mathrm{d}x\wedge \mathrm{d}y and X=xX=\partial_x, one has ιXω=dy\iota_X\omega=\mathrm{d}y.
  2. Volume form in R3\mathbb{R}^3. For ω=dxdydz\omega=\mathrm{d}x\wedge\mathrm{d}y\wedge\mathrm{d}z and X=zX=\partial_z, one gets ιXω=dxdy\iota_X\omega=\mathrm{d}x\wedge\mathrm{d}y.
  3. Symplectic geometry viewpoint. On a symplectic manifold (M,ω)(M,\omega), the assignment XιXωX\mapsto \iota_X\omega identifies vector fields with 1-forms when ω\omega is nondegenerate; Hamiltonian vector fields are characterized by ιXω=dH\iota_X\omega=\mathrm{d}H for some function HH.