Gauge transform of a local connection form

How a local connection 1-form changes under a change of local section by a G-valued gauge function.
Gauge transform of a local connection form

Let π:PM\pi:P\to M be a principal GG-bundle with connection form ωΩ1(P;g)\omega\in \Omega^1(P;\mathfrak{g}) as in .

Fix an open set UMU\subset M and a local section s:UPs:U\to P. The local connection form on UU is

AsωΩ1(U;g). A \coloneqq s^*\omega \in \Omega^1(U;\mathfrak{g}).

A gauge transformation on UU is a g:UGg:U\to G. It determines a new local section s:UPs':U\to P by

s(x)s(x)g(x). s'(x)\coloneqq s(x)\cdot g(x).

The corresponding local connection form A=(s)ωA'=(s')^*\omega is related to AA by the gauge transformation rule

A  =  Ad(g1)A  +  g1dg, A' \;=\; \mathrm{Ad}(g^{-1})A \;+\; g^{-1}dg,

where g1dgΩ1(U;g)g^{-1}dg\in \Omega^1(U;\mathfrak{g}) is the pullback of the left Maurer–Cartan form on GG along gg, and Ad(g1)\mathrm{Ad}(g^{-1}) acts pointwise on g\mathfrak{g}.

This formula is the local manifestation of the global equivariance condition (R_h^*\omega=\mathrm{Ad}(h^{-1})\omega.

Examples

  1. Abelian case U(1)U(1). For G=U(1)G=U(1), Ad\mathrm{Ad} is trivial, so A=A+g1dgA'=A+g^{-1}dg. Writing g=eifg=e^{if} locally gives g1dg=idfg^{-1}dg=i\,df, hence A=A+idfA'=A+i\,df.

  2. Matrix group GL(n)GL(n). For G=GL(n)End(Rn)G=GL(n)\subset \mathrm{End}(\mathbb{R}^n), the adjoint action is conjugation, and the rule becomes

    A=g1Ag+g1dg, A' = g^{-1}Ag + g^{-1}dg,

    where AA is a matrix-valued 1-form.

  3. Constant gauge transformations. If gg is constant on UU, then dg=0dg=0 and A=Ad(g1)AA'=\mathrm{Ad}(g^{-1})A; i.e. only the g\mathfrak{g}-basis changes.