Frame bundle of a manifold

Principal GL(n) bundle of ordered tangent frames on a smooth n-manifold.
Frame bundle of a manifold

Let MM be an nn-dimensional with π:TMM\pi:TM\to M.

The frame bundle of MM, denoted Fr(TM)\mathrm{Fr}(TM), is the set of all ordered bases (frames) of tangent spaces:

Fr(TM)={(x,(e1,,en)): xM, (e1,,en) is a basis of TxM}. \mathrm{Fr}(TM)=\{(x,(e_1,\dots,e_n)):\ x\in M,\ (e_1,\dots,e_n)\text{ is a basis of }T_xM\}.

Equivalently, a point of Fr(TM)\mathrm{Fr}(TM) can be viewed as a linear isomorphism u:RnTxMu:\mathbb R^n\to T_xM.

The projection Fr(TM)M\mathrm{Fr}(TM)\to M sends a frame to its basepoint. There is a right action of GL(n,R)\mathrm{GL}(n,\mathbb R) by change of basis:

(x,(e1,,en))A:=(x,(jejAj1,,jejAjn)). (x,(e_1,\dots,e_n))\cdot A := (x,(\sum_j e_j A_{j1},\dots,\sum_j e_j A_{jn})).

With this structure, Fr(TM)M\mathrm{Fr}(TM)\to M is a with structure group GL(n,R)\mathrm{GL}(n,\mathbb R).

Connections on TMTM can be equivalently encoded as principal connections on Fr(TM)\mathrm{Fr}(TM) (see ).

Examples

  1. Euclidean space.
    For M=RnM=\mathbb R^n, choosing the standard coordinate frame identifies Fr(TRn)Rn×GL(n,R)\mathrm{Fr}(T\mathbb R^n)\cong \mathbb R^n\times \mathrm{GL}(n,\mathbb R).

  2. Parallelizable manifolds.
    If MM admits a global frame of vector fields (a global trivialization of TMTM), then Fr(TM)\mathrm{Fr}(TM) is globally a product M×GL(n,R)M\times \mathrm{GL}(n,\mathbb R).

  3. The 2-sphere.
    For M=S2M=S^2, the tangent bundle is nontrivial, so Fr(TS2)\mathrm{Fr}(TS^2) is not isomorphic to S2×GL(2,R)S^2\times \mathrm{GL}(2,\mathbb R). This is a bundle-level reflection of the fact that TS2TS^2 has no global frame.